Crystalline solids are generally known as excellent heat conductors, amorphous materials or glasses as thermal insulators. It has thus come as a surprise that certain crystal structures defy this paradigm. A prominent example are type-I clathrates and other materials with guest-host structures. They sustain low-energy Einstein-like modes in their phonon spectra, but are also prone to various types of disorder and phonon-electron scattering and thus the mechanism responsible for their ultralow thermal conductivities has remained elusive. Our thermodynamic and transport measurements on various clathrate single crystal series and their comparison with ab initio simulations reveal an all phononic Kondo effect as origin. This insight devises design strategies to further suppress the thermal conductivity of clathrates and other related materials classes, with relevance for thermoelectric waste heat recovery and, more generally, phononic applications. It may also trigger theoretical work on strong correlation effects in phonon systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385256 | PMC |
http://dx.doi.org/10.1038/s41467-019-08685-1 | DOI Listing |
Acta Crystallogr C Struct Chem
January 2025
Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.
In recent years, molecular-based ferroelectric materials have attracted widespread research interest due to their excellent performance. Among them, host-guest-type crown ether inclusion compounds composed of organic ammonium cations, crown ether molecules and corresponding anions have become a star component in the design of molecular-based ferroelectric materials because they are prone to order-disorder phase transitions. Many anions have been studied extensively as counter-ions, such as bis(trifluoromethanesulfonyl)amidate (TFSA), PF and [FeCl].
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Recently, experimental observation has shown that the substitutional alloy (Ce,La)H can be successfully synthesized under high pressure, approximately 90-170 GPa, and become a superconductor with a high critical temperature () superconductivity in ternary rare-earth clathrate hydrides between 148-178 K. In this work, we theoretically simplified the hydride alloy (Ce,La)H, a compound in a series that could function as a potential superconductor, with CeLaH exhibiting strong electron-phonon coupling (EPC). The CeLaH alloy is scrutinized for its lattice dynamical stability in the pressure range of 100 to 150 GPa.
View Article and Find Full Text PDFJ Phys Chem A
November 2024
Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
Nat Commun
November 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Recently, tremendous research interest has been aroused in clathrate superhydrides. However, their microscopic properties, especially the superconducting (SC) gap and electron-phonon coupling (EPC) strength, are largely unexplored experimentally. Here, we investigate the time-resolved ultrafast spectroscopy of a superconductor LaH under an ultrahigh pressure of 165 GPa.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!