Most Earth system models agree that land will continue to store carbon due to the physiological effects of rising CO concentration and climatic changes favoring plant growth in temperature-limited regions. But they largely disagree on the amount of carbon uptake. The historical CO increase has resulted in enhanced photosynthetic carbon fixation (Gross Primary Production, GPP), as can be evidenced from atmospheric CO concentration and satellite leaf area index measurements. Here, we use leaf area sensitivity to ambient CO from the past 36 years of satellite measurements to obtain an Emergent Constraint (EC) estimate of GPP enhancement in the northern high latitudes at two-times the pre-industrial CO concentration (3.4 ± 0.2 Pg C yr). We derive three independent comparable estimates from CO measurements and atmospheric inversions. Our EC estimate is 60% larger than the conventionally used multi-model average (44% higher at the global scale). This suggests that most models largely underestimate photosynthetic carbon fixation and therefore likely overestimate future atmospheric CO abundance and ensuing climate change, though not proportionately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385346 | PMC |
http://dx.doi.org/10.1038/s41467-019-08633-z | DOI Listing |
J Genet Genomics
January 2025
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security.
View Article and Find Full Text PDFBioresour Technol
January 2025
Water Research Centre and Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand. Electronic address:
Dynamic oxygen fluctuations in activated sludge were investigated to enhance valuable biochemical production during wastewater treatment. Batch experiments compared constant aeration with rapid cycling between oxygen-rich and oxygen-poor states. Fluctuating oxygen concentrations (0-2 mg/L) significantly increased production of valuable biochemicals compared to constant oxygen concentration (2 mg/L).
View Article and Find Full Text PDFSci Total Environ
January 2025
Civil and Infrastructure Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia. Electronic address:
This study investigates the primary data collected at a used cooking oil (UCO) recycling facility to quantify its environmental impact when used as a rejuvenator in high content reclaimed asphalt pavement (RAP) mixes. Annual energy consumption data sets on transportation, storage, filtration, machinery, and purification are assessed using the life cycle assessment (LCA) methodology with the LCA software Simapro 9.4 to evaluate the influential parameters and processes in reducing emissions.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!