The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary.

Science

Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720-4767, USA.

Published: February 2019

Late Cretaceous records of environmental change suggest that Deccan Traps (DT) volcanism contributed to the Cretaceous-Paleogene boundary (KPB) ecosystem crisis. However, testing this hypothesis requires identification of the KPB in the DT. We constrain the location of the KPB with high-precision argon-40/argon-39 data to be coincident with changes in the magmatic plumbing system. We also found that the DT did not erupt in three discrete large pulses and that >90% of DT volume erupted in <1 million years, with ~75% emplaced post-KPB. Late Cretaceous records of climate change coincide temporally with the eruption of the smallest DT phases, suggesting that either the release of climate-modifying gases is not directly related to eruptive volume or DT volcanism was not the source of Late Cretaceous climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aav1446DOI Listing

Publication Analysis

Top Keywords

cretaceous-paleogene boundary
8
eruptive tempo
4
tempo deccan
4
deccan volcanism
4
volcanism relation
4
relation cretaceous-paleogene
4
boundary late
4
late cretaceous
4
cretaceous records
4
records environmental
4

Similar Publications

Background And Aims: Resolving the phylogeny of hornworts is critical in understanding the evolution of key morphological characters that are unique to the group, including the pyrenoid. Extensive phylogenomic analyses have revealed unexpected complexities in the placement of Leiosporoceros, the previously identified sister taxon to other hornworts. We explore the role of incomplete lineage sorting (ILS) and ancient reticulation in resolving interrelationships and comprehending the diversification and evolutionary processes within hornworts.

View Article and Find Full Text PDF

The Chicxulub asteroid impact event at the Cretaceous-Paleogene (K-Pg) boundary ~66 Myr ago is widely considered responsible for the mass extinction event leading to the demise of the non-avian dinosaurs. Short-term cooling due to massive release of climate-active agents is hypothesized to have been crucial, with S-bearing gases originating from the target rock vaporization considered an important driving force. Yet, the magnitude of the S release remains poorly constrained.

View Article and Find Full Text PDF

Alongside the Chicxulub meteorite impact, Deccan volcanism is considered a primary trigger for the Cretaceous-Paleogene (K-Pg) mass extinction. Models suggest that volcanic outgassing of carbon and sulfur-potent environmental stressors-drove global temperature change, but the relative timing, duration, and magnitude of such change remains uncertain. Here, we use the organic paleothermometer MBT' and the carbon-isotope composition of two K-Pg-spanning lignites from the western Unites States, to test models of volcanogenic air temperature change in the ~100 kyr before the mass extinction.

View Article and Find Full Text PDF

The spatiotemporal distribution of Mesozoic dinosaur diversity.

Biol Lett

December 2024

Department of Earth Sciences, University College London, London WC1E 6BT, UK.

Much of our view on Mesozoic dinosaur diversity is obscured by biases in the fossil record. In particular, spatiotemporal sampling heterogeneity affects identification of the timing and geographical location of radiations, the recognition of the latitudinal diversity gradient, as well as interpretation of purported extinctions, faunal turnovers and their drivers, including the Early Jurassic Jenkyns Event and across the Jurassic/Cretaceous boundary. The current distribution of sampling means it is impossible to robustly determine whether these 'events' were globally synchronous and geologically instantaneous or spatiotemporally staggered.

View Article and Find Full Text PDF
Article Synopsis
  • The Chicxulub impact, which happened 66 million years ago, is marked by a global layer rich in platinum-group elements like ruthenium, serving as a boundary between the Cretaceous and Paleogene eras.
  • We analyzed ruthenium isotopes from various impact sites, including those from the Cretaceous-Paleogene boundary and older impacts, to determine their origins.
  • Our findings suggest that the Chicxulub impactor was a carbonaceous asteroid from beyond Jupiter, while other impacts were linked to siliceous asteroids originating closer to the Sun.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!