The enzymes responsible for acceleration of ferulic acid and ethyl ferulate formation in sake mash were studied. Ferulic acid and ethyl ferulate are formed during the sake brewing process from feruloylated glucuronoarabinoxylan. Cellulase reagent from genus Trichoderma was used instead of rice koji, because rice koji for sake brewing produces extremely low levels of xylan-degrading enzymes. A combination of the reagent with rice koji enzymes accelerated the formation of ferulic acid from α-rice powder. Addition of the reagent to sake mash increased ferulic acid and ethyl ferulate formation. The enzyme responsible for the accelerated formation was purified using a newly developed assay method and α-rice powder as a substrate. During the assay procedure, feruloylated oligosaccharide was converted to ferulic acid by feruloylesterase for HPLC analysis. Analysis of the N-terminal amino acid sequence of the purified samples was successfully conducted after pyroglutamyl aminopeptidase de-blocking. Purified enzymes were identified as members of the glycoside hydrolase family 10 (GH10) and family 11 (GH11) xylanases by BLASTP database research. The GH10 xylanase showed higher specific activity for α-rice powder and insoluble wheat arabinoxylan compared with GH11 xylanase; the GH11 xylanase showed higher specific activity for the other xylan substrates, especially glucuronoarabinoxylan. The GH10 xylanase showed higher accelerating activity than the GH11 xylanase in the sake mash. The results of this study provides useful knowledge on ferulic acid and ethyl ferulate formation in sake mash, the relative levels of these compounds and their influence on the sensory quality of sake.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2019.01.014DOI Listing

Publication Analysis

Top Keywords

ferulic acid
24
acid ethyl
20
ethyl ferulate
20
sake mash
20
rice koji
16
ferulate formation
12
α-rice powder
12
xylanase higher
12
gh11 xylanase
12
genus trichoderma
8

Similar Publications

Inhibition of the invasive plant Ambrosia trifida by Sigesbeckia glabrescens extracts.

Ecotoxicol Environ Saf

January 2025

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

Ambrosia trifida is an invasive weed that destroys the local ecological environment, and causes a reduction in population diversity and grassland decline. The evolution of herbicide resistance has also increased the difficulty of managing A. trifida, so interspecific plant competition based on allelopathy has been used as an effective and sustainable ecological alternative.

View Article and Find Full Text PDF

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Flaxseed and olive oil effectively treat numerous diseases and health conditions, particularly metabolic disorders. Traditional medicine has used both oils for managing cardiovascular disease, diabetes, gastrointestinal dysfunctions, metabolic-dysfunction-associated fatty liver disease (MAFLD), obesity, and more. This review explores the bioactive and polyphenolic compounds in flaxseed and olive oils that provide anti-inflammatory, antioxidant, anti-microbial, hepatoprotective, cardioprotective, antidiabetic, and gastroprotective benefits.

View Article and Find Full Text PDF

Unlabelled: This study investigates the optimization of bioactive components in thermosonicated black carrot juice using response surface methodology (RSM) and gradient boosting (GB) modeling techniques. Thermosonication, a combination of ultrasound and heat, was applied to enhance the nutritional quality of black carrot juice, which is rich in anthocyanins, phenolic compounds, and antioxidants. The study examined the effects of temperature, processing time, and ultrasonic amplitude on total carotenoid content (TCC), total anthocyanin content (TAC), ferric reducing antioxidant power (FRAP), and total phenolic content.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!