In this paper, we discuss recent efforts from the last 20 years to describe transport in municipal solid waste (MSW). We first discuss emerging themes in the field to draw the reader's attention to a series of significant challenges. We then examine contributions regarding the modelling of leachate flow to study transport via mechanistic and stochastic approaches, at a variety of scales. Since MSW is a multiphase, biogeochemically active porous medium, and with the aim of providing a picture of transport phenomena in a wider context, we then discuss a selection of studies on leachate flow incorporating some of the complex landfill processes (e.g. biodegradation and settlement). It is clear from the literature survey that our understanding of transport phenomena exhibited by landfilled waste is far from complete. Attempts to model transport have largely consisted of applying representative elementary-scale models (the smallest volume which can be considered representative of the entire waste mass). Due to our limited understanding of fluid flow through landfilled waste, and the influence of simultaneously occurring biogeomechanical processes within the waste mass, elementary-scale models have been unable to fully describe the flow behaviour of MSW. Pore-scale modelling and experimental studies have proven to be a promising approach to study fluid flow through complex porous media. Here, we suggest that pore-scale modelling and experimental work may provide valuable insights into transport phenomena exhibited by MSW, which could then be used to revise elementary-scale models for improved representation of field-scale problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X19828120 | DOI Listing |
Heliyon
January 2025
Institute of Mathematics, Henan Academy of Sciences, Zhengzhou, 450046, China.
This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
Background: Cerebral autoregulation is a robust regulatory mechanism that stabilizes cerebral blood flow in response to reduced blood pressure, thereby preventing cerebral ischaemia. Scientists have long believed that cerebral autoregulation also stabilizes cerebral blood flow against increases in intracranial pressure, which is another component that determines cerebral perfusion pressure. However, this idea was inconsistent with the complex pathogenesis of normal pressure hydrocephalus, which includes components of chronic cerebral ischaemia due to mild increases in intracranial pressure.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Fluid Dynamics Laboratory, School of Mechanical Engineering, VIT, Vellore, 632014, India.
Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China.
Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From the Department of Department of Radiology, Brain Health Imaging Institute (A.R-F, J.I, S.P, M.d, G.C.C) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA; the Department of Neurology (A.R-F), Pontificia Universidad Javeriana, Bogota, Colombia; the Department of Radiology, Division of Molecular Imaging and Therapeutics (A.R-F, J.I) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA; the Department of Neurology (D.Z, MM, L.R, A.S.N) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA.
Amyloid-targeting therapy has recently become widely available in the U.S. for the treatment of patients with symptomatic mild Alzheimer's disease (AD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!