We report the integration of an automated chemical optical sensing unit for the parallel interrogation of 12 BICELLs in a sensing chip. The work was accomplished under the European Project Enviguard (FP7-OCEAN-2013-614057) with the aim of demonstrating an optical nano-biosensing unit for the in-situ detection of various chemical pollutants simultaneously in oceanic waters. In this context, we designed an optical sensing chip based on resonant nanopillars (R-NPs) transducers organized in a layout of twelve biophotonic sensing cells (BICELLs). The sensing chip is interrogated in reflection with a 12-channels optical spectrometer equipped with an embedded computer-on-chip performing image processing for the simultaneous acquisition and analysis (resonant mode fitting) of the 12 spectra. A microfluidic chip and an automated flow control system composed of four pumps and a multi-path micro-valve makes it possible to drive different complex protocols. A rack was designed ad-hoc for the integration of all the modules. As a proof of concept, fluids of different refractive index (RI) were flowed in the system in order to measure the time response (sensogram) of the R-NPs under optical reflectance, and assess the sensors' bulk sensitivity (285.9 ± 16.4 nm/RIU) and Limit of Detection (LoD) (2.95 × 10 RIUS). The real-time response under continuous flow of a sensor chip based on R-NP is showed for the first time, obtaining 12 sensograms simultaneously, featuring the unit as a potential excellent multiplexed detection system. These results indicate the high potential of the developed chemical sensing unit to be used for in-situ, multiplex and automatic optical biosensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412770 | PMC |
http://dx.doi.org/10.3390/s19040878 | DOI Listing |
Front Nutr
January 2025
Qualitative Research Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
Introduction: This study examines how gastric cancer patients adjust their eating habits and quality of life after total gastrectomy, particularly concerning early satiety. While total gastrectomy may provide a potential cure, it also leads to significant physical, psychological, and social changes. Understanding these adaptations is essential for enhancing survivorship care.
View Article and Find Full Text PDFCell Death Discov
January 2025
Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
The aging process is marked by a time-dependent deterioration in cellular functions, particularly the immune and neural systems. Understanding the phenotype acquisition of microglia, the sentinel immune cells of the brain, is crucial for understanding the nature of age-related neurological diseases. However, the specific phenotype adopted by microglia during aging remains a subject of debate and is contingent on the chosen experimental model.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart Universitesi, 17100, Çanakkale, Turkey.
The anisotropic behavior of fiber-reinforced polymer composites, coupled with their susceptibility to various failure modes, poses challenges for their structural health monitoring (SHM) during service life. To address this, non-destructive testing techniques have been employed, but they often suffer from drawbacks such as high costs and suboptimal resolutions. Moreover, routine inspections fail to disclose incidents or failures occurring between successive assessments.
View Article and Find Full Text PDFEur J Pain
February 2025
Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
Background: Complex regional pain syndrome (CRPS) is a debilitating condition characterised by significant heterogeneity. Early diagnosis is critical, but limited data exists on the condition's early stages. This study aimed to characterise (very) early CRPS patients and explore potential subgroups to enhance understanding of its mechanisms.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of RNA Innovation, Science, and Engineering; Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
Lysosomal membrane protein LYCHOS (lysosomal cholesterol signaling) translates cholesterol abundance to mammalian target of rapamycin activation. Here we report the 2.11-Å structure of human LYCHOS, revealing a unique fusion architecture comprising a G-protein-coupled receptor (GPCR)-like domain and a transporter domain that mediates homodimer assembly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!