Localized Surface Plasmon Resonance (LSPR) sensors have potential applications in essential and important areas such as bio-sensor technology, especially in medical applications and gas sensors in environmental monitoring applications. Figure of Merit (FOM) and Sensitivity (S) measurements are two ways to assess the performance of an LSPR sensor. However, LSPR sensors suffer low FOM compared to the conventional Surface Plasmon Resonance (SPR) sensor due to high losses resulting from radiative damping of LSPs waves. Different methodologies have been utilized to enhance the performance of LSPR sensors, including various geometrical and material parameters, plasmonic wave coupling from different structures, and integration of noble metals with graphene, which is the focus of this report. Recent studies of metal-graphene hybrid plasmonic systems have shown its capability of promoting the performance of the LSPR sensor to a level that enhances its chance for commercialization. In this review, fundamental physics, the operation principle, and performance assessment of the LSPR sensor are presented followed by a discussion of plasmonic materials and a summary of methods used to optimize the sensor's performance. A focused review on metal-graphene hybrid nanostructure and a discussion of its role in promoting the performance of the LSPR sensor follow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412767PMC
http://dx.doi.org/10.3390/s19040862DOI Listing

Publication Analysis

Top Keywords

performance lspr
16
lspr sensor
16
metal-graphene hybrid
12
surface plasmon
12
plasmon resonance
12
lspr sensors
12
hybrid nanostructure
8
localized surface
8
promoting performance
8
performance
7

Similar Publications

Interfacial mechanisms of enhanced photoluminescence in AgI-doped red light emitting perovskite quantum dot glass.

J Colloid Interface Sci

January 2025

Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:

Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.

View Article and Find Full Text PDF

Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants.

PLoS One

January 2025

Grupo de Investigación en Síntesis Orgánica, de Polímeros y Biotecnología Aplicada-SINBIOTEC, Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Colombia.

Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days.

View Article and Find Full Text PDF

A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr/BiOI (Ag/BiOBr/BiOI) photocatalysts with varying Ag loading levels were synthesized via the solvothermal-photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading level significantly enhanced the photogenerated charge carrier (PCC) transfer on the BiOBr/BiOI semiconductor surface and the performance of Ag/BiOBr/BiOI photocatalysts, which was attributable to the synergism between the effect of OVs and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. Additionally, BiOBr/BiOI heterojunctions facilitated efficient visible-light harvesting and PCC separation.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs), ricin, and many other biological toxins are called AB toxins possessing heterogeneous A and B subunits. We propose herein a quick and safe sensing approach to AB toxins based on their unique quaternary structures. The proposed approach utilizes IgG antibodies against their A-subunits in combination with those human cell-membrane glycolipids that act as the natural ligands of B-subunits.

View Article and Find Full Text PDF

According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!