In this project, we have studied the use of electrical impedance cardiography as a possible method for measuring blood pulse wave velocity, and hence be an aid in the assessment of the degree of arteriosclerosis. Using two different four-electrode setups, we measured the timing of the systolic pulse at two locations, the upper arm and the thorax, and found that the pulse wave velocity was in general higher in older volunteers and furthermore that it was also more heart rate dependent for older subjects. We attribute this to the fact that the degree of arteriosclerosis typically increases with age and that stiffening of the arterial wall will make the arteries less able to comply with increased heart rate (and corresponding blood pressure), without leading to increased pulse wave velocity. In view of these findings, we conclude that impedance cardiography seems to be well suited and practical for pulse wave velocity measurements and possibly for the assessment of the degree of arteriosclerosis. However, further studies are needed for comparison between this approach and reference methods for pulse wave velocity and assessment of arteriosclerosis before any firm conclusions can be drawn.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412959 | PMC |
http://dx.doi.org/10.3390/s19040850 | DOI Listing |
JACC Clin Electrophysiol
December 2024
St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:
Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.
Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.
J Clin Med
December 2024
2nd Department of Ophthalmology, Attikon Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece.
: Retinal vein occlusion (RVO) is a relatively uncommon condition with a complex pathophysiology. However, its association with traditional cardiovascular risk factors is well established. In this study, we compared arterial stiffness and endothelial function between patients with RVO and healthy controls.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy.
Even if rarely detected, right atrial (RA) masses represent a diagnostic challenge due to their heterogeneous presentation. Para-physiological RA structures, such as a prominent Eustachian valve, Chiari's network, and lipomatous atrial hypertrophy, may easily be misinterpreted as pathological RA masses, including thrombi, myxomas, and vegetations. Each pathological mass should always be correlated with adequate clinical, anamnestic, and laboratory data.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland.
Cardiovascular diseases (CVDs) are one of the most critical public health problems in the contemporary world because they are the leading cause of morbidity and mortality. Diabetes mellitus (DM) is one of the most substantial risk factors for developing CVDs. Glycated hemoglobin is a product of the non-enzymatic glycation of hemoglobin present in erythrocytes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.
An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!