Epithelial-mesenchymal transition (EMT) is an embryonic program that is reactivated in cancer and regulates the invasion and metastasis of tumor cells. Zinc finger E-box binding homeobox 2 (ZEB2) induces EMT by upregulating matrix metalloproteinases (MMP), yet MMP genes lack ZEB2 binding motif in their promoters. Recently, expression of MMPs was associated to the activation of ETS1 transcription factor; however, a link between ZEB2 and ETS proto-oncogene 1, transcription factor (ETS1) remains to be elucidated. Hence, we investigated the transcriptional regulation of ETS1 by ZEB2 after our initial observation that ZEB2 and ETS1 are coexpressed in hepatocellular carcinoma cells (HCCs). Chromatin immunoprecipitation and luciferase reporter assays clearly showed that ZEB2 binds to E-box sequences on the promoter of ETS1. Elevated expression of ETS1 was found in DLD-ZEB2 and A431-ZEB2 inducible systems, and knockdown of ZEB2 caused an explicit downregulation of ETS1 in shZEB2-SNU398 and shZEB2-SK-HEP-1 cells. Repression of ETS1 expression in ZEB2-induced conditions substantially impaired the migration and invasive capacities of DLD1 cells. Mechanistically, knockdown of ETS1 in ZEB2-expressing cells resulted in the downregulation of established ZEB2 targets TWIST and MMP9. Correlation analyses in HCC lines, cancer complementary DNA arrays, and The Cancer Genome Atlas RNA-sequencing data set revealed that ZEB2 and ETS1 are coexpressed, and their expressions in human tumors show a highly significant positive correlation. Our results demonstrated that ZEB2 acts as an upstream regulator of ETS1 and, in turn, ETS1 maintains ZEB2-induced EMT. These findings add another level of complexity to the understanding of ZEB2 in the invasion and metastasis of cancer cells, and put ZEB2/ETS1 axis as a novel therapeutic target in human malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.22994DOI Listing

Publication Analysis

Top Keywords

ets1
13
ets1 coexpressed
12
zeb2
12
epithelial-mesenchymal transition
8
human tumors
8
invasion metastasis
8
transcription factor
8
zeb2 ets1
8
cells
6
coexpressed zeb2
4

Similar Publications

Orthologs of and impact sleep in mice.

Sleep Adv

December 2024

Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Model organisms such as are powerful tools to study the genetic basis of sleep. Previously, we identified the genes and using selective breeding for long and short sleep duration in an outbred population of . is a transcription factor that is part of the epidermal growth factor receptor signaling pathway, while is involved in proline and arginine metabolism.

View Article and Find Full Text PDF

Background: Asthma is a global chronic respiratory disease with complex pathogenesis. While current therapies offer some relief, they often fall short in effectively managing symptoms and preventing exacerbations for numerous patients. Thus, understanding its mechanisms and discovering new drug targets remains a pressing need for better treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates a potential link between myocardial infarction (MI) and lung cancer (LC), with an aim to uncover shared genes and pathways through bioinformatics analysis.
  • Two public datasets were analyzed to find differentially expressed genes (DEGs), with enrichment analysis revealing connections to key biological processes and the identification of eight hub genes that show diagnostic promise.
  • Eight common signature genes linked to both diseases were validated, and zoledronic acid was highlighted as a potential therapeutic drug for treating patients suffering from both MI and LC.
View Article and Find Full Text PDF

Atherosclerosis and aneurysm of the aorta are relatively common pathological conditions that remain asymptomatic for a long period of time and have life-threatening and disabling complications. DNA methylation profiling in several regions (a dilated area, a nondilated area, and an atherosclerotic plaque) of the ascending aorta was carried out in patients with aortic aneurysm. DNA methylation was analyzed by reduced representation bisulfite sequencing (RRBS).

View Article and Find Full Text PDF

Inhibiting de novo lipogenesis identifies a therapeutic vulnerability in therapy-resistant colorectal cancer.

Redox Biol

December 2024

Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India. Electronic address:

A significant clinical challenge in patients with colorectal cancer (CRC), which adversely impacts patient survival, is the development of therapy resistance leading to a relapse. Therapy resistance and relapse in CRC is associated with the formation of lipid droplets (LD) by stimulating de novo lipogenesis (DNL). However, the molecular mechanisms underlying the increase in DNL and the susceptibility to DNL-targeted therapies remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!