AI Article Synopsis

  • Scientists studied how male and female mice react differently to brain injuries that resemble traumatic brain injury (TBI).
  • They treated the mice with special drugs that block hormones to see how this affects their brain injuries.
  • The results showed that males had bigger brain injuries, while the treatments made neurological problems worse in females and affected hormone-related processes differently in both sexes.

Article Abstract

Clinical and animal studies have revealed sex-specific differences in histopathological and neurological outcome after traumatic brain injury (TBI). The impact of perioperative administration of sex steroid inhibitors on TBI is still elusive. Here, we subjected male and female C57Bl/6N mice to the controlled cortical impact (CCI) model of TBI and applied pharmacological inhibitors of steroid hormone synthesis, that is, letrozole (LET, inhibiting estradiol synthesis by aromatase) and finasteride (FIN, inhibiting dihydrotestosterone synthesis by 5α-reductase), respectively, starting 72 h prior CCI, and continuing for a further 48 h after CCI. Initial gene expression analyses showed that androgen (Ar) and estrogen receptors (Esr1) were sex-specifically altered 72 h after CCI. When examining brain lesion size, we found larger lesions in male than in female mice, but did not observe effects of FIN or LET treatment. However, LET treatment exacerbated neurological deficits 24 and 72 h after CCI. On the molecular level, FIN administration reduced calpain-dependent spectrin breakdown products, a proxy of excitotoxicity and disturbed Ca homeostasis, specifically in males, whereas LET increased the reactive astrocyte marker glial fibrillary acid protein specifically in females. Examination of neurotrophins (brain-derived neurotrophic factor, neuronal growth factor, NT-3) and their receptors (p75 , TrkA, TrkB, TrkC) revealed CCI-induced down-regulation of TrkB and TrkC protein expression, which was reduced by LET in both sexes. Interestingly, FIN decreased neuronal growth factor mRNA expression and protein levels of its receptor TrkA only in males. Taken together, our data suggest a sex-specific impact on pathogenic processes in the injured brain after TBI. Sex hormones may thus modulate pathogenic processes in experimental TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.14678DOI Listing

Publication Analysis

Top Keywords

pathogenic processes
12
sex hormones
8
hormones modulate
8
modulate pathogenic
8
processes experimental
8
traumatic brain
8
brain injury
8
male female
8
72 h cci
8
neuronal growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!