AI Article Synopsis

  • The study investigates the cooperative effects in the adsorption of ethanol and 1-butanol from vapor on the material ZIF-8, revealing that binary mixtures show increased equilibrium capacities compared to individual components.
  • This behavior was predicted using ideal adsorbed solution theory (IAST) and confirmed through grand canonical Monte Carlo (GC MC) simulations, which highlighted the interactions among adsorbate molecules.
  • Breakthrough experiments demonstrated the predicted cooperative adsorption through specific changes observed during the regeneration of ZIF-8 packed columns, leading to the development of a dynamic breakthrough model that incorporates IAST to explain the results.

Article Abstract

While in most adsorptive separations different mixture components tend to compete for different adsorption sites, we report the existence of cooperative effects in the adsorption of alcohols (ethanol and 1-butanol) from the vapor phase on ZIF-8. The presence of these molecules in binary mixtures leads to an increase in their equilibrium capacities, compared to the pure component isotherms. These effects were first observed when predicting the mixture equilibrium capacities using the ideal adsorbed solution theory (IAST) and were also observed via grand canonical Monte Carlo (GC MC) simulations. GC MC simulations showed that the interaction between adsorbate molecules leads to the cooperative effect predicted by IAST. The predicted cooperative adsorption could be confirmed via breakthrough experiments. In these experiments, a "roll-up" of 1-butanol was observed during the regeneration of a ZIF-8 packed column. A dynamic breakthrough model employing IAST was developed and used to explain the effect of the adsorption equilibrium on the dynamic breakthrough profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.8b03946DOI Listing

Publication Analysis

Top Keywords

cooperative adsorption
8
equilibrium capacities
8
dynamic breakthrough
8
adsorption
5
macroscopic microscopic
4
microscopic view
4
view competitive
4
cooperative
4
competitive cooperative
4
adsorption alcohol
4

Similar Publications

Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors.

iScience

December 2024

Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, P.R. China.

Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.

View Article and Find Full Text PDF

In this study, the assessment of the leaves' co-product resulting from the hydrodistillation process was conducted to evaluate its anticorrosive potential for carbon steel in the hydrochloric acid medium. Phytochemical analysis of this biomass revealed its abundance in terms of polyphenols and flavonoids; hence the determination of total polyphenol content recorded a value of 75.4 mg GAE per g extract.

View Article and Find Full Text PDF

Cobalt nanoparticles decorated hollow N-doped carbon nanospindles enable high-performance lithium-oxygen batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:

Despite the ultrahigh theoretical energy density and cost-effectiveness, aprotic lithium-oxygen (Li-O) batteries suffer from slow oxygen redox kinetics at cathodes and large voltage hysteresis. Here, we well-design ultrafine Co nanoparticles supported by N-doped mesoporous hollow carbon nanospindles (Co@HCNs) to serve as efficient electrocatalysts for Li-O battery. Benefiting from strong metal-support interactions, the obtained Co@HCNs manifest high affinity for the LiO intermediate, promoting formation of ultrathin nanosheet-like LiO with low-impedance contact interface on the Co@HCNs cathode surface, which facilitates the reversible decomposition upon charging.

View Article and Find Full Text PDF

Ferrocene-decorated graphene nanosheets built by edge-to-face π-π interaction for room temperature ppb-level NO sensing.

Talanta

December 2024

National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China. Electronic address:

The development of materials toward ppb-level nitric oxide (NO) sensing at room temperature remains in high demand for the monitoring of respiratory inflammatory diseases. In order to find an iron-containing molecule without steric hindrance to combine with graphene for room temperature NO gas sensing, here a supramolecular assembly of ferrocene (Fc) and reduced graphene oxide (rGO) was designed and prepared for NO sensing. The assembly of Fc/rGO was characterized using FT-IR, TEM, and XPS measurements.

View Article and Find Full Text PDF

Numerous studies indicate biochar's nitrogen (N) adsorption capacity plays a crucial role in soil N retention. However, there is limited understanding on inorganic N adsorption mechanisms in biochar derived from aquatic weeds such as water hyacinth (WH). This study investigated ammonium-N (NH-N) and nitrate-N (NO-N) adsorption capacities and mechanisms of WH biochar pyrolyzed at different pyrolysis temperatures of 400 °C, 600 °C, and 800 °C (BC400, BC600, and BC800, respectively).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!