Background: Histone methylation, as an essential pattern of posttranslational modifications, contributes to multiple cancer-related biological processes. Dysregulation of histone methylation is now considered a biomarker for cancer prognosis.
Aims: This study investigated and evaluated the potential role of four histone lysine trimethylation markers as biomarkers for esophageal squamous cell carcinoma (ESCC) prognosis.
Methods: Tissue arrays were made from 135 paraffin-embedded ESCC samples and examined for histone markers by immunohistochemistry, and 10 pairs of cancer and noncancerous mucosa tissues from ESCC patients were investigated with Western blot. Chi-squared test, Kaplan-Meier analysis with log-rank test, and Cox proportional hazard trend analyses were performed to assess the prognostic values of the markers.
Results: Histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 9 trimethylation (H3K9me3), and histone 4 lysine 20 trimethylation (H4K20me3), but not histone 3 lysine 36 trimethylation (H3K36me3), showed stronger immunostaining signals in tumor tissues than in the corresponding adjacent non-neoplastic mucosa tissues. The expression patterns of H3K36me3, H3K9me3, and H4K20me3 correlated with tumor infiltrating depth, lymph node involvement, and pTNM stage. Low-scoring H3K9me3 and H4K20me3 predicted better prognosis, while H3K36me3 manifested the opposite trend. Poor prognosis occurred in ESCC patients with expression patterns of high levels of H3K9me3, high levels of H4K20me3, and low levels of H3K36me3 expression.
Conclusions: H3K9me3, H4K20me3, and H3K36me3 showed a close relationship with clinical features and were considered independent risk factors for survival of ESCC patients. The combination of H3K9me3, H4K20me3, and H3K36me3 expression, rather than the expression of a single histone marker, is believed to further enhance evaluations of ESCC prognosis and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-019-05529-2 | DOI Listing |
Mol Oncol
January 2025
Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany.
Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
Histone lysine-specific demethylase 1 (LSD1) is overexpressed in various solid and hematological tumors, suggesting its potential as a therapeutic target, but there are currently no LSD1 inhibitors available on the market. In this study we employed a computer-guided approach to identify novel LSD1/EGFR dual inhibitors as a potential therapeutic agent for non-small cell lung cancer. Through a multi-stage virtual screening approach, we found L-1 and L-6, two compounds with unique scaffolds that effectively inhibit LSD1 with IC values of 6.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Hepatobiliary Surgery of the affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UMR7364 CNRS UNISTRA, Strasbourg, Alsace, France.
Background: Aging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor, however, it is not clear which biological mechanisms are common or disease-specific. Here we investigated epigenomic/genomic signatures in the hippocampus of mouse models of aging and of tauopathy, an AD-related feature.
Methods: Aging was modelled by comparing 18-month- versus 3-month-old WT mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!