A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of Various Potassium Channels in Caffeine-induced Aortic Relaxation in Rats. | LitMetric

Role of Various Potassium Channels in Caffeine-induced Aortic Relaxation in Rats.

Saudi J Med Med Sci

Department of Physiology, College of Medicine, University of Dammam, Dammam, Saudi Arabia.

Published: August 2016

Background: Studies done on caffeine-induced changes in aortic rings have demonstrated inconclusive results. Moreover, the role of various potassium channels in caffeine-induced effects has not been explored so far. The present study was designed to explore the direct effects of caffeine on rat aortic rings and the role of various potassium channels in those changes/effects.

Materials And Methods: This study was carried out in College of Medicine, University of Dammam. Aortic rings obtained from Sprague Dawley rats were mounted in the organ bath. Tension in the aortic rings was measured with an isometric force transducer and recorded with a PowerLab data-acquisition system. Aortic rings in relaxed and contractile state were exposed to caffeine and various potassium channel blockers (glyburide, 4-aminopyridine, or tetraethylammonium).

Results: Caffeine produced significant relaxation of isolated aortic rings (baseline tension: 1.26 ± 0.30 g, tension after adding cumulative concentrations of caffeine: 1.12 ± 0.31 g, < 0.05) in the absence or presence of norepinephrine (NE) (tension induced by NE: 1.06 ± 0.37 g, tension after adding cumulative concentrations of caffeine: 1.01 ± 0.36 g, < 0.05). Caffeine's vasodilatory effects were, however, blocked in aortic rings pretreated with different types of potassium channel blockers such as 4-aminopyridine (tension induced by NE: 1.52 ± 0.41 g, tension after adding cumulative concentrations of caffeine: 1.50 ± 0.37 g, > 0.05), glyburide (tension induced by NE: 0.82 ± 0.35 g, tension after adding cumulative concentrations of caffeine: 0.79 ± 0.42 g, > 0.05), and tetraethylammonium (tension induced by NE: 0.68 ± 0.34 g, tension after adding cumulative concentrations of caffeine: 0.67 ± 0.33 g, > 0.05).

Conclusion: Caffeine causes significant dilation of aortic rings, and this vasodilatory effect may involve ATP-dependent, calcium-mediated, or voltage-dependent potassium channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298334PMC
http://dx.doi.org/10.4103/1658-631X.188251DOI Listing

Publication Analysis

Top Keywords

aortic rings
32
tension adding
20
adding cumulative
20
cumulative concentrations
20
concentrations caffeine
20
potassium channels
16
tension induced
16
role potassium
12
tension
11
aortic
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!