Zoonotic influenza A viruses of avian origin can cause severe disease in individuals, or even global pandemics, and thus pose a threat to human populations. Waterfowl and shorebirds are believed to be the reservoir for all influenza A viruses, but this has recently been challenged by the identification of novel influenza A viruses in bats. The major bat influenza A virus envelope glycoprotein, haemagglutinin, does not bind the canonical influenza A virus receptor, sialic acid or any other glycan, despite its high sequence and structural homology with conventional haemagglutinins. This functionally uncharacterized plasticity of the bat influenza A virus haemagglutinin means the tropism and zoonotic potential of these viruses has not been fully determined. Here we show, using transcriptomic profiling of susceptible versus non-susceptible cells in combination with genome-wide CRISPR-Cas9 screening, that the major histocompatibility complex class II (MHC-II) human leukocyte antigen DR isotype (HLA-DR) is an essential entry determinant for bat influenza A viruses. Genetic ablation of the HLA-DR α-chain rendered cells resistant to infection by bat influenza A virus, whereas ectopic expression of the HLA-DR complex in non-susceptible cells conferred susceptibility. Expression of MHC-II from different bat species, pigs, mice or chickens also conferred susceptibility to infection. Notably, the infection of mice with bat influenza A virus resulted in robust virus replication in the upper respiratory tract, whereas mice deficient for MHC-II were resistant. Collectively, our data identify MHC-II as a crucial entry mediator for bat influenza A viruses in multiple species, which permits a broad vertebrate tropism.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-0955-3DOI Listing

Publication Analysis

Top Keywords

bat influenza
28
influenza viruses
24
influenza virus
20
influenza
11
bat
8
non-susceptible cells
8
conferred susceptibility
8
viruses
7
virus
6
mhc class
4

Similar Publications

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak collectively underscore the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2 subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, we describe a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the SARS-CoV-2 virus continues to circulate worldwide, causing the deaths of millions of people. The continuous circulation of the virus, its genetic diversity, the emergence of new variants with increased transmissibility, and/or the capacity of the virus to escape from the immune system constitute a major public health concern. In our study, we aimed to characterize SARS-CoV-2 strains in Iraq from the first introduction until the end of 2023, and to identify their variants, lineages, clades, and mutation patterns.

View Article and Find Full Text PDF

The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.

View Article and Find Full Text PDF

Alternative splicing expands the antiviral IFITM repertoire in Chinese rufous horseshoe bats.

PLoS Pathog

December 2024

Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.

Species-specific interferon responses are shaped by the virus-host arms race. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication. These genes restrict virus entry and are key players in antiviral interferon responses.

View Article and Find Full Text PDF

Bats exhibit a greater capacity to tolerate diverse viruses than other terrestrial mammals. To address these questions, we utilized evolutionary and bibliometric analyses to explore the immunological characteristics of bats and identify contemporary research hotspots in bat immunity. To investigate the historical interactions between bats and viral infections, we used tBLASTn software to identify the integrated endogenous retroviruses within the genomes of nine bat species and seven other mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!