Among strategies suggested to decrease agricultural soil NO losses, the use of nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) has been proposed. However, the efficiency of DMPP might be affected by soil amendments, such as biochar, which has been shown to reduce NO emissions. This study evaluated the synergic effect of a woody biochar applied with DMPP on soil NO emissions. A incubation study was conducted with a silt loam soil and a biochar obtained from Pinus taeda at 500 °C. Two biochar rates (0 and 2% (w/w)) and three different nitrogen treatments (unfertilized, fertilized and fertilized + DMPP) were assayed under two contrasting soil water content levels (40% and 80% of water filled pore space (WFPS)) over a 163 day incubation period. Results showed that DMPP reduced NO emissions by reducing ammonia-oxidizing bacteria (AOB) populations and promoting the last step of denitrification (measured by the ratio nosZI + nosZII/nirS + nirK genes). Biochar mitigated NO emissions only at 40% WFPS due to a reduction in AOB population. However, when DMPP was applied to the biochar amended soil, a counteracting effect was observed, since the NO mitigation induced by DMPP was lower than in control soil, demonstrating that this biochar diminishes the efficiency of the DMPP both at low and high soil water contents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382844PMC
http://dx.doi.org/10.1038/s41598-019-38697-2DOI Listing

Publication Analysis

Top Keywords

biochar
8
34-dimethylpyrazole phosphate
8
dmpp
8
soil
8
efficiency dmpp
8
dmpp soil
8
soil water
8
emissions
5
biochar reduces
4
reduces efficiency
4

Similar Publications

In this study, the effects of using different scrap ratios in a converter on carbon emissions were analyzed based on life cycle assessment (LCA) theory, and the carbon emissions from the converter were evaluated with the use of coke and biochar as heating agents at high scrap ratios. In this industrial experiment, the CO emissions during the converter smelting process decreased with the increase in the scrap steel ratio. For every 1% increase in the scrap steel ratio, the carbon emissions during the steelmaking process decreased by 14.

View Article and Find Full Text PDF

In Situ Phytoremediation of Mine Tailings with High Concentrations of Cadmium and Lead Using (Sapindaceae).

Plants (Basel)

December 2024

Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.

The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.

View Article and Find Full Text PDF

Co-Hydrothermal Carbonization of Goose Feather and Pine Sawdust: A Promising Strategy for Disposal of Sports Waste and the Robust Improvement of the Supercapacitor Characteristics of Pyrolytic Nanoporous Carbon.

Molecules

December 2024

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Discarded sports waste faces bottlenecks in application due to inadequate disposal measures, and there is often a neglect of enhancing resource utilization efficiency and minimizing environmental impact. In this study, nanoporous biochar was prepared through co-hydrothermal carbonization (co-HTC) and pyrolytic activation by using mixed goose feathers and heavy-metals-contaminated pine sawdust. Comprehensive characterization demonstrated that the prepared M-3-25 (Biochar derived from mixed feedstocks (25 mg/g Cu in pine sawdust) at 700 °C with activator ratios of 3) possesses a high specific surface area 2501.

View Article and Find Full Text PDF

Analysis of the Pyrolysis Kinetics, Reaction Mechanisms, and By-Products of Rice Husk and Rice Straw via TG-FTIR and Py-GC/MS.

Molecules

December 2024

Biochar Engineering & Technology Research Center of Liaoning Province, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.

Article Synopsis
  • The study analyzed the pyrolysis behaviors of rice husk (RH) and rice straw (RS) using various scientific techniques, revealing distinct stages of pyrolysis for each organic material.
  • The activation energies for the different components (pseudo-hemicellulose, pseudo-cellulose, and pseudo-lignin) were calculated, showing varying levels of energy requirement between RH and RS.
  • RS demonstrated better pyrolysis performance and produced a greater variety of valuable by-products compared to RH, indicating potential for utilization in agriculture, bioenergy, and chemical sectors.
View Article and Find Full Text PDF

Surfactant-modified biochar is a viable adsorbent for eliminating Cr(VI) from synthetic wastewater. The biochar obtained from the zea mays plant (BC) was tailored with sodium dodecyl sulfate (SDS) as an anionic surfactant forming SDS-BC adsorbent. Different controlling conditions have been evaluated including pH of the solution, biomass concentration, primary Cr(VI) concentration, time of adsorption, and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!