Cytosolic lipid droplets are endoplasmic reticulum-derived organelles typically found in seeds as reservoirs for physiological energy and carbon to fuel germination. Here, we report synthetic biology approaches to co-produce high-value sesqui- or diterpenoids together with lipid droplets in plant leaves. The formation of cytosolic lipid droplets is enhanced in the transient Nicotiana benthamiana system through ectopic production of WRINKLED1, a key regulator of plastid fatty acid biosynthesis, and a microalgal lipid droplet surface protein. Engineering of the pathways providing the universal C5-building blocks for terpenoids and installation of terpenoid biosynthetic pathways through direction of the enzymes to native and non-native compartments boost the production of target terpenoids. We show that anchoring of distinct biosynthetic steps onto the surface of lipid droplets leads to efficient production of terpenoid scaffolds and functionalized terpenoids. The co-produced lipid droplets "trap" the terpenoids in the cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382807PMC
http://dx.doi.org/10.1038/s41467-019-08515-4DOI Listing

Publication Analysis

Top Keywords

lipid droplets
24
cytosolic lipid
12
droplets
6
lipid
6
droplets engineered
4
engineered organelles
4
production
4
organelles production
4
production accumulation
4
accumulation terpenoid
4

Similar Publications

Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy.

Acta Pharmacol Sin

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.

Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.

View Article and Find Full Text PDF

Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation.

In Vitro Model

December 2024

Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.

Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.

View Article and Find Full Text PDF

Emerging evidence shows that lipid metabolic reprogramming plays a vital role in tumor metastasis. The effect and mechanism of fatty acids and lipid droplets (LDs), the core products of lipid metabolism, on the metastasis of oral squamous cell carcinoma (OSCC), need further exploration. In this study, the influence of palmitic acid (PA) and oleic acid (OA) on the migration and invasion ability of OSCC cells was determined by in vitro experiments.

View Article and Find Full Text PDF

Free fatty acids derived from lipophagy enhanced resistance to anoikis by activating Src in high-invasive clear cell renal cell carcinoma cells.

Cell Signal

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China. Electronic address:

Autophagy-mediated anoikis resistance plays a critical role in the initiation of tumor metastasis. Therefore, we investigated the role and mechanism of anoikis resistance mediated by free fatty acids (FFAs) derived from lipophagy in highly invasive clear cell renal cell carcinoma (ccRCC). Here, we found that the highly invasive ccRCC cell line Himi exhibited enhanced resistance to anoikis and elevated lipophagy levels.

View Article and Find Full Text PDF

Light-up lipid droplets dynamic behaviors using rationally designed carbon dots.

Talanta

January 2025

Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:

Article Synopsis
  • Lipid droplets (LDs) are crucial organelles for lipid storage and metabolism in cells, and imaging them can reveal their biological roles.
  • Researchers developed LD-targeted carbon dots (LD-CDs) using a Schiff base reaction, which exhibit strong sensitivity to changes in solvent polarity due to their unique charge transfer characteristics.
  • These LD-CDs not only specifically illuminate LDs and distinguish cancer cells from normal ones but also track dynamic cellular processes like lipophagy and lipid metabolism in living cells and zebrafish.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!