Dead spot is a relatively new disease of creeping bentgrass and hybrid bermudagrass that is incited by Ophiosphaerella agrostis. Initial symptoms are difficult to diagnose and clinicians generally rely on the presence of pseudothecia within infected tissue or isolation of O. agrostis on an artificial medium. The main goal of this study was to develop a polymerase chain reaction-based technique capable of quickly identifying O. agrostis within infected creeping bentgrass tissues. Oligonucleotide primers specific for O. agrostis were developed based on the internal transcribed spacer (ITS) rDNA regions (ITS1 and ITS2) of three previously sequenced isolates of O. agrostis. The 22-bp primers amplified a 445- or 446-bp region of 80 O. agrostis isolates collected from creeping bentgrass and bermudagrass in 11 states. Primers did not amplify DNA from other common turfgrass pathogens, including three closely related species of Ophiosphaerella. Selective amplification of O. agrostis was successful from field-infected creeping bent-grass samples and primers did not amplify the DNA of noninfected, field-grown creeping bent-grass or hybrid bermudagrass plants. Amplification of purified O. agrostis DNA was successful at quantities between 50 ng and 5 pg. The entire process, including DNA isolation, amplification, and amplicon visualization, may be completed within 4 h. These results indicate the specificity of these primers for assisting in the accurate and timely identification of O. agrostis and the diagnosis of dead spot in both bentgrass and bermudagrass hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PD-89-0980 | DOI Listing |
Protoplasma
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Nematology, University of California Riverside, 3401 Watkins Drive, Riverside, CA 92521.
J Proteomics
January 2025
Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Phytopathology
November 2024
Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A.
Dollar spot is a destructive foliar disease of amenity turfgrass caused by spp. fungi, mainly , on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as ; however, the role of OA in the pathogenic development of remains unclear due to its recalcitrance to genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!