Specific and quantitative biotin/avidin-enzyme-linked immunosorbent assays (BA-ELISA) were evaluated for their ability to assess resistance of wheat and triticale cultivars to Septoria tritici (leaf blotch) and Stagonospora nodorum (leaf and glume blotch) in field trials. Using BA-ELISAs, the antigen amounts of S. tritici and of Stagonospora nodorum were measured in the flag leaf (F) and the first leaf below it (F-1) of five cultivars of triticale at Zadok's growth stage (GS) 75-80 and in 11 cultivars of wheat at GS 73-75 in 2001 and 2002. The presence of the pathogens was found to be specific to parts of the plants, cultivar, and plant species. Stagonospora nodorum was the dominant leaf blotch pathogen in triticale, while both Septoria tritici and Stagonospora nodorum occurred commonly in wheat. Close correlations were obtained between the pathogen amount measured by BA-ELISA and the percentage of necrotic leaf area in the tested cultivars. The BA-ELISA values for the tested triticale and wheat cultivars were ranked, and they correlated well with the susceptibility ratings given in the cultivar list recommended by Bundessortenamt (German Federal Office of Plant Variety), which is based on visual assessment of the leaf blotch complex caused by S. tritici and Stagonospora nodorum. The relative susceptibilities of individual wheat cultivars to both pathogens were similar. In conclusion, BA-ELISA provided for an accurate diagnosis and quantification of S. tritici and Stagonospora nodorum in infected plant tissue, and therefore can be used to assess resistance to these fungi in a disease complex in both early-stage breeding lines and field trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PD-89-1229 | DOI Listing |
Commun Biol
December 2024
Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia.
Parastagonospora nodorum is necrotrophic fungal pathogen of wheat with significant genomic resources. Population-level pangenome data for 173 isolates, of which 156 were from Western Australia (WA) and 17 were international, were examined for overall genomic diversity and effector gene content. A heterothallic core population occurred across all regions of WA, with asexually-reproducing clonal clusters in dryer northern regions.
View Article and Find Full Text PDFPlant Dis
October 2024
USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, 1616 Albrecht BLVD, Fargo, North Dakota, United States, 58102;
Septoria nodorum blotch is an important disease of both durum and hard red spring wheat (HRSW) worldwide. The disease is caused by the necrotrophic fungal pathogen Parastagonospora nodorum when compatible gene-for-gene interactions occur between pathogen-produced necrotrophic effectors (NEs) and corresponding host sensitivity genes. To date, nine sensitivity gene-NE interactions have been identified, but there is little information available regarding their overall frequency in durum and HRSW.
View Article and Find Full Text PDFPlants (Basel)
September 2024
Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia.
PLoS Pathog
September 2024
Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
The regulation of virulence in plant-pathogenic fungi has emerged as a key area of importance underlying host infections. Recent work has highlighted individual transcription factors (TFs) that serve important roles. A prominent example is PnPf2, a member of the Zn2Cys6 family of fungal TFs, which controls the expression of effectors and other virulence-associated genes in Parastagonospora nodorum during infection of wheat.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2024
Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A.
The ability of laser scanning confocal microscopy to generate high-contrast 2D and 3D images has become essential in studying plant-fungal interactions. Techniques such as visualization of native fluorescence, fluorescent protein tagging of microbes, green fluorescent protein (GFP)/red fluorescent protein (RFP)-fusion proteins, and fluorescent labeling of plant and fungal proteins have been widely used to aid in these investigations. Use of fluorescent proteins has several pitfalls, including variability of expression in planta and the requirement of gene transformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!