Demand for organically grown fruit, including sour cherry, is rising in Europe and the United States, but the limited tools for disease management have not been thoroughly investigated. In this study, management of brown rot blossom blight, caused by Monilinia laxa, was examined for organic sour cherry production in Hungary. Combinations of sanitation practices and fungicide treatments, including copper hydroxide, lime sulfur, and micronized and nonmicronized wettable sulfur, were investigated in 2 years and two cultivars. The effect of fungicide treatments on yield and phytotoxicity on spur-leaf clusters was also determined. Among fungicide treatments suitable for organic production, copper hydroxide and lime sulfur alone or in combination with micronized wettable sulfur were most effective for blossom blight control when applied twice (at closed blossom and full bloom) or three times (at closed blossom, full bloom, and petal fall) during bloom. Both treatments were not as effective as the conventional standard and caused more damage on spur-leaf clusters during wet weather conditions, but significantly increased crop yield compared with the untreated control or wettable sulfur treatments. Micronized and nonmicronized sulfur applied up to three times during bloom were equally effective, did not impact yield, were not phytotoxic, and reduced blossom blight compared with the untreated control. Sanitation (the removal of blighted twigs and mummified fruit) reduced blossom blight in both cultivars compared with nonsanitized plots when disease pressure was high. The need for an integrated approach to effectively manage blossom blight in organic sour cherry production is discussed. This is the first in-depth characterization of cultural and chemical brown rot blossom blight control options for organic sour cherry production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PD-89-1164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!