Analytes concentration techniques are being developed with the appealing expectation to boost the performance of biosensors. One promising method lies in the use of electrokinetic forces. We present hereafter a new design for a microstructured plasmonic sensor which is obtained by conventional microfabrication techniques, and which can easily be adapted on a classical surface plasmon resonance imaging (SPRI) system without further significant modification. Dielectrophoretic trapping and electro-osmotic displacement of the targets in the scanned fluid are performed through interdigitated 200 μm wide gold electrodes that also act as the SPR-sensing substrate. We demonstrate the efficiency of our device's collection capabilities for objects of different sizes (200 nm and 1 μm PS beads, as well as 5-10 μm yeast cells). SPRI is relevant for the spatial analysis of the mass accumulation at the electrode surface. We demonstrate that our device overcomes the diffusion limit encountered in classical SPR sensors thanks to rapid collection capabilities (<1 min) and we show a consequent improvement of the detection limit, by a factor >300. This study of an original device combining SPRI and electrokinetic forces paves the way to the development of fully integrated active plasmonic sensors with direct applications in life sciences, electrochemistry, environmental monitoring and agri-food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201800436 | DOI Listing |
J Gen Physiol
January 2025
Chemistry Department, University of Massachusetts Lowell, Lowell, MA, USA.
Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:
Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye.
Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Surface plasmon resonance (SPR) biosensors have experienced rapid development in recent years and have been widely applied in various fields. Angular-interrogation SPR biosensors play an important role in the field of biological detection due to their advantages of reliable results and high stability. However, angular-interrogation SPR biosensors also suffer from low detection sensitivity, poor real-time performance, and limited dynamic detection range, which seriously restricts their application and promotion.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.
Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!