Motor-evoked potentials (MEPs), elicited by transcranial magnetic stimulation (TMS) over the motor cortex, are reduced during the preparatory period in delayed response tasks. In this study we examined how MEP suppression varies as a function of the anatomical organization of the motor cortex. MEPs were recorded from a left index muscle while participants prepared a hand or leg movement in or prepared an eye or mouth movement in . In this manner, we assessed if the level of MEP suppression in a hand muscle varied as a function of the anatomical distance between the agonist for the forthcoming movement and the muscle targeted by TMS. MEP suppression was attenuated when the cued effector was anatomically distant from the hand (e.g., leg or facial movement compared with finger movement). A similar effect was observed in in which MEPs were recorded from a muscle in the leg and the forthcoming movement involved the upper limb or face. These results demonstrate an important constraint on preparatory inhibition: it is sufficiently broad to be manifest in a muscle that is not involved in the task, but it is not global, showing a marked attenuation when the agonist muscle belongs to a different segment of the body. Using transcranial magnetic stimulation, we examined changes in corticospinal excitability as people prepared to move. Consistent with previous work, we observed a reduction in excitability during the preparatory period, an effect observed in both task-relevant and task-irrelevant muscles. However, this preparatory inhibition is anatomically constrained, attenuated in muscles belonging to a different body segment than the agonist of the forthcoming movement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589713 | PMC |
http://dx.doi.org/10.1152/jn.00711.2018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!