O-Methylguanine-DNA methyltransferase (MGMT) is an enzyme that repairs the DNA damage caused by the tobacco habit, and low activity of this enzyme has been associated with a risk of lung cancer (LC). Our objective was to determine the association of the promoter methylation and the rs12917 polymorphism of MGMT with formation of DNA bulky adducts and the risk of LC in the Mexican Mestizo population. In this study are included 431 subjects. High-resolution melting analysis was used to determine the polymorphism MGMT rs12917 and methylation levels. DNA bulky adducts were determined by P-postlabeling. Our results showed that MGMT rs12917 and higher levels of methylation in the MGMT promoter are associated with the risk of LC. The levels of adducts are related with the phe/phe genotype and, only in the cases group, with the hypermethylation (>50%) of MGMT; however, this last association was not statistically significant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.2018.4526 | DOI Listing |
Alzheimers Dement
December 2024
Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
Introduction: Recently, the O-6-methylguanine-DNA methyltransferase (MGMT) locus was proposed as influencing the risk of Alzheimer's disease (AD) in women who did not carry the apolipoprotein E ε4 allele. We examined an Amish founder population for any influence of genetic variation in and around the MGMT locus on the risk for dementia.
Methods: Genetic association was performed for single nucleotide polymorphisms (SNPs) surrounding the MGMT locus.
Gene
December 2024
State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil. Electronic address:
Background: Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples.
View Article and Find Full Text PDFTransl Cancer Res
November 2024
Department of Neurosurgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China.
Background: Glioblastoma (GBM) is a frequent malignant tumor in neurosurgery characterized by a high degree of heterogeneity and genetic instability. DNA double-strand breaks generated by homologous recombination deficiency (HRD) are a well-known contributor to genomic instability, which can encourage tumor development. It is unknown, however, whether the molecular characteristics linked with HRD have a predictive role in GBM.
View Article and Find Full Text PDFmedRxiv
October 2024
Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
Background: Temozolomide (TMZ) treatment has demonstrated, but variable, impact on glioma prognosis. This study examines associations of survival with DNA repair gene germline polymorphisms among glioma patients who did and did not have TMZ treatment. Identifying genetic markers which sensitize tumor cells to TMZ could personalize therapy and improve outcomes.
View Article and Find Full Text PDFGene
January 2025
Federal University of Ceará, Department of Pathology and Forensic Medicine, Coronel Nunes de Melo Street, 1315, Rodolfo Teófilo, Fortaleza, Ceará, Brazil. Electronic address:
Gastric cancer (GC) is the fourth-leading cause of cancer-related mortality. The intestinal subtype of GC comes after the cascade of Correa, presenting H. pylori infection as the major etiological factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!