A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lymphotoxin-α promotes tumor angiogenesis in HNSCC by modulating glycolysis in a PFKFB3-dependent manner. | LitMetric

Tumor angiogenesis is critical for tumor progression as the new blood vessels supply nutrients and facilitate metastasis. Previous studies indicate tumor associated lymphocytes, including B cells and T cells, contribute to tumor angiogenesis and tumor progression. The present study aims to identify the function of Lymphotoxin-α (LT-α), which is secreted by the activated lymphocytes, in the tumor angiogenesis of head and neck squamous cell carcinoma (HNSCC). The coculture system between HNSCC cell line Cal27 and primary lymphocytes revealed that tumor cells promoted the LT-α secretion in the cocultured lymphocytes. In vitro data further demonstrated that LT-α promoted the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs) by enhancing the PFKFB3-mediated glycolytic flux. Genetic and pharmacological inhibition of PFKFB3 suppressed the enhanced proliferation and migration of HUVECs. We further identified that LT-α induced PFKFB3 expression was dependent on the TNFR/NF-κB signaling pathway. In addition, we proved that PFKFB3 blockade decreased the density of CD31 positive blood vessels in HNSCC xenografts. Finally, the results from the human HNSCC tissue array revealed that the expression of LT-α in HNSCC samples positively correlated with microvessel density, lymphocytes infiltration and endothelial PFKFB3 expression. In conclusion, infiltrated lymphocyte secreted LT-α enhances the glycolysis of ECs in a PFKFB3-dependent manner through the classical NF-κB pathway and promotes the proliferation and migration of ECs, which may contribute to the aberrant angiogenesis in HNSCCs. Our study suggests that PFKFB3 blockade is a promising therapeutic approach for HNSCCs by targeting tumor angiogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32221DOI Listing

Publication Analysis

Top Keywords

tumor angiogenesis
20
proliferation migration
12
tumor
9
pfkfb3-dependent manner
8
tumor progression
8
blood vessels
8
pfkfb3 expression
8
pfkfb3 blockade
8
angiogenesis
6
hnscc
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!