A novel high concentration doping method based on the transformation from CsPbBr nanocrystals (NCs), which reacted with divalent metal bromide MBr, to CsPbMBr NCs was developed. Two types of M and Zn which cannot emit light and Mn and Eu which can be used as the luminous centres, were chosen to trigger the transformation of CsPbBr NCs to CsPbMBr NCs. CsPbZnBr NCs maintained high photoluminescence quantum yields (PLQY) (>75%) and had good dispersion in hexane without obvious dissolution or agglomeration after two weeks. By adjusting the reaction temperature, the intrinsic band edge luminescence and the emission of Mn ions CsPbMnBr NCs show different colours of light from green, green-yellow, pink, and orange-red to purple under an excitation of 365 nm. CsPbEuBr NCs were synthesized for the first time, and a weak luminescence around 618 nm from Eu was detected in addition to the band edge luminescence of NCs. X-ray photoelectron spectroscopy (XPS) data showed that Zn, Mn and Eu (Eu) doping concentrations are up to 80%, 75% and 50%, respectively. We also analysed the doping mechanism and compared the new method with the traditional high temperature injection method. The lead-depleted perovskite NCs transformed from CsPbBr can provide a feasible pathway to reduce the lead toxicity of perovskite NCs and expand their applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr09845j | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.
View Article and Find Full Text PDFACS Nano
January 2025
DST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
Elucidating the structural dynamics of ligand-stabilized noble metal nanoclusters (NCs) is critical for understanding their properties and for developing applications. Ligand rearrangement at NC surfaces is an important contributor to structural change. In this study, we investigate the dynamic behavior of ligand-protected [Ag(L)] NC's (L = 1,3-benzenedithiol) interacting with secondary ligand 2,2'-[1,4-phenylenebis (methylidynenitrilo)] bis[benzenethiol] (referred to as ).
View Article and Find Full Text PDFRSC Adv
January 2025
Nanoscience Research Laboratory, Department of Chemistry, Shivaji University Kolhapur 416 004 Maharashtra India
This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
The design and synthesis of multifunctional nanomaterials have attracted considerable attention for expanding the range of practical applications. Herein, a metal-organic framework (MOFs)-derived NiCoS attached to MXene is rationally designed and constructed for an optical limiter and supercapacitor. The MOF-derived NiCoS enhances the tendency of hydroxyl groups on the MXene surface to attract metal ions, resulting in the formation of sulfur vacancies.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Lead halide perovskite nanocrystal materials such as CsPbX (X = Cl, Br, and I) have triggered an intense research upsurge due to their excellent scintillation performance. Herein, an crystallization strategy is developed to grow CsPbBr nanocrystals (NCs) within a low-melting-point (280 °C) coordination polymer (CP) glass. The viscosity of coordination glass is reduced through a low-temperature (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!