Par3 regulates polarized convergence between APP and BACE1 in hippocampal neurons.

Neurobiol Aging

Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA. Electronic address:

Published: May 2019

The convergence between amyloid precursor protein (APP) and its β-secretase β-site APP cleaving enzyme 1 (BACE1) is a prerequisite for the generation of β-amyloid peptide, a key pathogenic agent for Alzheimer's disease. Yet the underlying molecular mechanisms regulating their convergence remain unclear. Here, we show that the polarity protein partitioning-defective 3 (Par3) regulates the polarized convergence between APP and BACE1 in hippocampal neurons. Par3 forms a complex with BACE1 through its first PDZ domain, which is important for regulating BACE1 endosome-to-TGN trafficking. In the absence of Par3, there is an increase in the convergence between internalized APP and BACE1. In hippocampal neurons, loss of Par3 leads to increased APP and BACE1 convergence in axons but not in dendrites. This polarized convergence mainly occurs in retrograde or stalled axonal late endocytic organelles and is likely due to compartment-specific regulation of APP trafficking by Par3. Together, our data show a novel function for Par3 in regulating polarized convergence between APP and BACE1 in hippocampal neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6528466PMC
http://dx.doi.org/10.1016/j.neurobiolaging.2019.01.023DOI Listing

Publication Analysis

Top Keywords

app bace1
20
polarized convergence
16
bace1 hippocampal
16
hippocampal neurons
16
convergence app
12
par3 regulates
8
regulates polarized
8
convergence
8
app
8
bace1
8

Similar Publications

Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

The endocannabinoid N-arachidonoylethanolamine (AEA) is a pro-homeostatic bioactive lipid known for its anti-inflammatory, anti-oxidative, immunomodulatory, and neuroprotective properties, which may contrast/mitigate Alzheimer's disease (AD) pathology. This study explores the therapeutic potential of targeting fatty acid amide hydrolase (FAAH), the major enzyme degrading AEA, in mouse models of amyloidosis (APP/PS1 and Tg2576). Enhancing AEA signaling by genetic deletion of FAAH delayed cognitive deficits in APP/PS1 mice and improved cognitive symptoms in 12-month-old AD-like mice.

View Article and Find Full Text PDF

Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes.

Alzheimers Dement

January 2025

Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.

Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.

View Article and Find Full Text PDF

Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!