Aims: Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone that augments insulin secretion in pancreatic β-cells via its glucose-dependent insulinotropic polypeptide receptor (GIPR). Recent genome-wide association studies identified a single nucleotide variant (SNV) in the GIPR encoding gene (GIPR), rs1800437, that is associated with obesity and insulin resistance. In the present study, we tested whether GIPR variants contribute to obesity and disturb glucose homeostasis or diabetes in specific patient populations.
Materials And Methods: Exon sequencing of GIPR was performed in 164 children with obesity and insulin resistance and in 80 children with paediatric-onset diabetes of unknown origin. The Study of Health in Pomerania (SHIP) cohort, comprising 8320 adults, was screened for the GIPR variant Arg217Leu. GIPR variants were expressed in COS-7 cells and cAMP production was measured upon stimulation with GIP. Cell surface expression was determined by ELISA. Protein homology modelling of the GIPR variants was performed to extract three-dimensional information of the receptor.
Results: A heterozygous missense GIPR variant Arg217Leu (rs200485112) was identified in a patient of Asian ancestry. Functional characterization of Arg217Leu revealed reduced surface expression and signalling after GIP challenge. The homology model of the GIPR structure supports the observed functional relevance of Arg217Leu.
Conclusion: In vitro functional studies and protein homology modelling indicate a potential relevance of the GIPR variant Arg217Leu in receptor function. The heterozygous variant displayed partial co-segregation with diabetes. Based on these findings, we suggest that GIPR variants may play a role in disturbed glucose homeostasis and may be of clinical relevance in homozygous patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dom.13634 | DOI Listing |
Brain
December 2024
Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
Eur J Endocrinol
August 2024
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.
Background: Primary bilateral macronodular adrenal hyperplasia (PBMAH) is a rare cause of Cushing's syndrome. Individuals with PBMAH and glucose-dependent insulinotropic polypeptide (GIP)-dependent Cushing's syndrome due to ectopic expression of the GIP receptor (GIPR) typically harbor inactivating KDM1A sequence variants. Primary unilateral macronodular adrenal hyperplasia (PUMAH) with concomitant glucocorticoid and androgen excess has never been encountered or studied.
View Article and Find Full Text PDFExp Clin Endocrinol Diabetes
December 2024
Department of Endocrinology and National Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, F-75014, Paris, France.
Food-dependent Cushing's syndrome (FDCS) is a rare presentation of hypercortisolism from adrenal origin, mostly observed in primary bilateral macronodular adrenal hyperplasia (PBMAH) but also in some cases of unilateral adrenocortical adenoma. FDCS is mediated by the aberrant expression of glucose-dependent insulinotropic peptide (GIP) receptor (GIPR) in adrenocortical cells. GIP, secreted by duodenal K cells after food intake, binds to its ectopic adrenal receptor, and stimulates cortisol synthesis following meals.
View Article and Find Full Text PDFBr J Pharmacol
July 2024
Department of Biomedical Sciences, Faculty of Healthy and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Background And Purpose: The gut hormone glucose-dependent insulinotropic polypeptide (GIP) signals via the GIP receptor (GIPR), resulting in postprandial potentiation of glucose-stimulated insulin secretion. The translation of results from rodent studies to human studies has been challenged by the unexpected effects of GIPR-targeting compounds. We, therefore, investigated the variation between species, focusing on GIPR desensitization and the role of the receptor C-terminus.
View Article and Find Full Text PDFNat Metab
July 2024
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Incretin-based therapies are highly successful in combatting obesity and type 2 diabetes. Yet both activation and inhibition of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) in combination with glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) activation have resulted in similar clinical outcomes, as demonstrated by the GIPR-GLP-1R co-agonist tirzepatide and AMG-133 (ref. ) combining GIPR antagonism with GLP-1R agonism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!