Background: Dysregulation of cation-chloride cotransporters NKCC1 and KCC2 expression was shown to be related to drug-resistant epilepsy. Previous studies suggested that bumetanide, an inhibitor of NKCC1, might have antiepileptic effects.
Objective: The aim of this study was to investigate the safety and efficacy of bumetanide add-on therapy in patients with drug-resistant epilepsy and its relation to cation-chloride cotransporters NKCC1 and KCC2.
Methods: We conducted an open-label, single-arm clinical trial in drug-resistant temporal lobe epilepsy (TLE) patients. This study consisted of three phases: pretreatment (3 months), titration (3 weeks), and active treatment (6 months). During the pretreatment phase, the dose of antiepileptic drugs was stabilized, and bumetanide was then added at an initial dose of 0.5 mg/day, increasing by 0.5 mg/week until a target dose of 2 mg/day was achieved. Bumetanide treatment was then continued for 6 months. Seizure frequency and adverse events were assessed at every monthly visit. Blood samples were collected from patients and 12 healthy controls were used for polymerase chain reaction and Western blot analyses. Primary clinical outcomes were drug safety and change in seizure frequency. Changes in NKCC1 and KCC2 expression were the non-clinical endpoints.
Results: A total of 30 patients were enrolled, 27 of whom completed the study. The mean duration of epilepsy was 16.5 years. Median seizure frequency per month was 9 [interquartile range (IQR) 7-14.5] at baseline, 3.67 (IQR 1.84-6.17) at the first 3 months, and 2 (IQR 0.84-4.34) at the last 3 months (p < 0.001). Five adverse events were detected in six patients. The reported adverse events were anorexia in four patients, nausea and vomiting in two patients, and agitation, headache and increased seizure frequency in one patient each. The level of NKCC1 and KCC2 gene transcripts and KCC2 protein did not change significantly following treatment (p > 0.05); however, we observed a significant reduction in NKCC1 protein levels (p = 0.042).
Conclusions: Bumetanide might be an effective and relatively tolerable drug in patients with drug-resistant TLE. Downregulation of NKCC1 protein following bumetanide treatment may be responsible for its antiepileptic effects.
Iranian Registry Of Clinical Trials Identifier: IRCT 201012115368N1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40263-019-00607-5 | DOI Listing |
Drug Deliv Transl Res
January 2025
School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK.
Glaucoma is an optic neuropathy in which progressive degeneration of retinal ganglion cells and the optic nerve leads to irreversible visual loss. Glaucoma is one of the leading causes of blindness. The pathogenesis of glaucoma is determined by different pathogenetic mechanisms, including increased intraocular pressure, mechanical stress, excitotoxicity, resistance to aqueous drainage and oxidative stress.
View Article and Find Full Text PDFCurr Oncol Rep
January 2025
Susan F. Smith Center for Women's Cancers, Breast Oncology Program, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA.
Purpose Of Review: In this review, we discuss evidence supporting the use of antibody-drug conjugates (ADCs) in breast cancer treatment, describe novel ADCs and combination regimens under development, and examine our current understanding of resistance mechanisms and biomarkers to guide ADC selection and sequencing.
Recent Findings: Three ADCs have proven benefit in patients with metastatic breast cancer: trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and sacituzumab govitecan (SG). There are over two hundred investigational ADCs on the horizon, as pre-clinical studies work to identify novel ADC targets and structures.
Mol Cancer Ther
December 2024
OBI Pharma, Inc., Taipei, Taiwan.
Trophoblast cell surface antigen 2 (TROP2) is highly expressed in multiple cancers relative to normal tissues, supporting its role as a target for cancer therapy. OBI-992 is an antibody-drug conjugate (ADC) derived from a novel TROP2-targeted antibody linked to the topoisomerase 1 (TOP1) inhibitor exatecan via an enzyme-cleavable hydrophilic linker, with a drug-antibody ratio of 4. This study evaluated and compared the antitumor activity of OBI-992 with that of benchmark TROP2-targeted ADCs datopotamab deruxtecan (Dato-DXd) and sacituzumab govitecan (SG) in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) models.
View Article and Find Full Text PDFBlood
December 2024
Central South University, Changsha, China.
Multiple myeloma (MM)-induced bone disease affects not only patients' quality of life but also their overall survival. Our previous work demonstrated that the gut microbiome plays a crucial role in MM progression and drug resistance. However, the role of altered gut microbiota in MM bone disease remains unclear.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Szegedi Tudományegyetem, Bölcsészet és Társadalomtudományi Kar, Pszichológia Intézet, Kognitív- és Neuropszichológia Tanszék Szeged, Egyetem u. 2., 6725 Magyarország.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!