The layer composition of the cerebral cortex represents a unique anatomical fingerprint of brain development, function, connectivity, and pathology. Historically, the cortical layers were investigated solely ex-vivo using histological means, but recent magnetic resonance imaging (MRI) studies suggest that T1 relaxation images can be utilized to separate the layers. Despite technological advancements in the field of high-resolution MRI, accurate estimation of whole-brain cortical laminar composition has remained limited due to partial volume effects, leaving some layers far beyond the image resolution. In this study, we offer a simple and accurate method for cortical laminar composition analysis, resolving partial volume effects and cortical curvature heterogeneity. We use a low-resolution 3T MRI echo planar imaging inversion recovery (EPI IR) scan protocol that provides fast acquisition (~ 12 min) and enables extraction of multiple T1 relaxation time components per voxel, which are assigned to types of brain tissue and utilized to extract the subvoxel composition of six T1 layers. While previous investigation of the layers required the estimation of cortical normals or smoothing of layer widths (similar to VBM), here we developed a sphere-based approach to explore the inner mesoscale architecture of the cortex. Our novel algorithm conducts spatial analysis using volumetric sampling of a system of virtual spheres dispersed throughout the entire cortical space. The methodology offers a robust and powerful framework for quantification and visualization of the cortical laminar structure on the cortical surface, providing a basis for quantitative investigation of its role in cognition, physiology and pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-019-01848-2 | DOI Listing |
Commun Biol
January 2025
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.
The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFRadiol Case Rep
March 2025
Department of Neurology, Delafontaine Hospital, Seine Saint-Denis, France.
Hepatic encephalopathy may trigger cortical laminar necrosis (CLN), which is characterized by diffuse symmetric cortical lesions. We report a 56-year-old woman with liver cirrhosis who presented with prolonged floor station, reduced alertness and left hemiplegia. Blood ammonia level was elevated.
View Article and Find Full Text PDFNat Commun
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions.
View Article and Find Full Text PDFPLoS Biol
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!