Many research fields, reaching from social networks and epidemiology to biology and physics, have experienced great advance from recent developments in random graphs and network theory. In this paper we propose a generic model of step-growth polymerisation as a promising application of the percolation on a directed random graph. This polymerisation process is used to manufacture a broad range of polymeric materials, including: polyesters, polyurethanes, polyamides, and many others. We link features of step-growth polymerisation to the properties of the directed configuration model. In this way, we obtain new analytical expressions describing the polymeric microstructure and compare them to data from experiments and computer simulations. The molecular weight distribution is related to the sizes of connected components, gelation to the emergence of the giant component, and the molecular gyration radii to the Wiener index of these components. A model on this level of generality is instrumental in accelerating the design of new materials and optimizing their properties, as well as it provides a vital link between network science and experimentally observable physics of polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381213PMC
http://dx.doi.org/10.1038/s41598-018-37942-4DOI Listing

Publication Analysis

Top Keywords

step-growth polymerisation
8
dynamic networks
4
networks drive
4
drive process
4
process irreversible
4
irreversible step-growth
4
step-growth polymerization
4
polymerization fields
4
fields reaching
4
reaching social
4

Similar Publications

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair.

Bioact Mater

April 2025

School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China.

Complete spinal cord injury (SCI) causes permanent locomotor, sensory and neurological dysfunctions. Targeting complex immunopathological microenvironment at SCI sites comprising inflammatory cytokines infiltration, oxidative stress and massive neuronal apoptosis, the conductive oriented nanofiber felt with efficient ROS clearance, anti-inflammatory effect and accelerating neural regeneration is constructed by step-growth addition polymerization and electrostatic spinning technique for SCI repair. The formation of innovative Fe-PDA-PAT chelate in nanofiber felt enhances hydrophilic, antioxidant, antibacterial, hemostatic and binding factor capacities, thereby regulating immune microenvironment of SCI.

View Article and Find Full Text PDF

Additive manufacturing technologies and, in particular, vat photopolymerization promise complex structures that can be made in a fast and easy fashion for highly individualized products. While the technology has upheld this promise many times already, some polymers are still out of reach or at least problematic to print reliably. High-performance epoxide-based resins, which are regulated by chain transfer multifunctional alcohols, are a typical example of resins with late gel points, which require long irradiation times and high light intensities to print.

View Article and Find Full Text PDF

Dissipative particle dynamics simulations on the self-assembly of rod-coil asymmetric diblock molecular brushes bearing responsive side chains.

Soft Matter

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

The self-assembly behaviors of rod-coil asymmetric diblock molecular brushes (ADMBs) bearing responsive side chains in a selective solvent are investigated dissipative particle dynamics simulations. By systematically varying the polymerization degree, copolymer concentration, and side chain length, several morphological phase diagrams were constructed. ADMB assemblies exhibited a rich variety of morphologies, including cylindrical micelles, spherical micelles, nanowires, polyhedral micelles, ellipsoid micelles, and large compound micelles.

View Article and Find Full Text PDF

This research utilizes carboxymethyl cellulose (CMC) as a renewable feedstock in polyurethane synthesis, offering improved thermal stability and potential for biomedical applications. In this study, a series of CMC-based polyurethanes was synthesized by using a step-growth polymerization reaction. The initial step involved the reaction of isophorone diisocyanate (IPDI) with hydroxy-terminated polybutadiene (HTPB) to prepare an isocyanate (-NCO) terminated prepolymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!