Stereoselective synthesis of sulfur-containing β-enaminonitrile derivatives through electrochemical Csp-H bond oxidative functionalization of acetonitrile.

Nat Commun

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China.

Published: February 2019

Incorporation of nitrile groups into fine chemicals is of particular interest through C(sp)-H bonds activation of alkyl nitriles in the synthetic chemistry due to the highly efficient atom economy. However, the direct α-functionalization of alkyl nitriles is usually limited to its enolate chemistry. Here we report an electro-oxidative C(sp)-H bond functionalization of acetonitrile with aromatic/aliphatic mercaptans for the synthesis of sulfur-containing β-enaminonitrile derivatives. These tetrasubstituted olefin products are stereoselectively synthesized and the stereoselectivity is enhanced in the presence of a phosphine oxide catalyst. With iodide as a redox catalyst, activation of C(sp)-H bond to produce cyanomethyl radicals proceeds smoothly at a decreased anodic potential, and thus highly chemoselective formation of C-S bonds and enamines is achieved. Importantly, the process is carried out at ambient temperature and can be easily scaled up.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381189PMC
http://dx.doi.org/10.1038/s41467-019-08762-5DOI Listing

Publication Analysis

Top Keywords

csp-h bond
12
synthesis sulfur-containing
8
sulfur-containing β-enaminonitrile
8
β-enaminonitrile derivatives
8
functionalization acetonitrile
8
alkyl nitriles
8
stereoselective synthesis
4
derivatives electrochemical
4
csp-h
4
electrochemical csp-h
4

Similar Publications

Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides.

Molecules

September 2023

Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy.

2-Propargyl-1,3-dicarbonyl compounds have been carbonylated under oxidative conditions and with the catalysis of the PdI/KI catalytic system to selectively afford previously unreported 2-(4-acylfuran-2-yl)acetamides in fair to good yields (54-81%) over 19 examples. The process takes place under relatively mild conditions and occurs via a mechanistic pathway involving C-H activation by oxidative monoamincarbonylation of the terminal triple bond of the substrates with formation of 2-ynamide intermediates, followed by 5---cyclization (via intramolecular conjugate addition of the in situ formed enolate to the 2-ynamide moiety) and aromative isomerization.

View Article and Find Full Text PDF

Recent progress in the oxidative coupling of unactivated Csp-H bonds with other C-H bonds.

Chem Commun (Camb)

December 2021

Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.

Article Synopsis
  • - The article discusses the oxidative coupling of carbon-hydrogen (C-H) bonds as a simple and efficient way to create carbon-carbon (C-C) bonds from hydrocarbons without needing any prior modifications.
  • - It highlights recent advancements in coupling unactivated Csp-H bonds with various hybrid C-H bonds, including combinations with Csp-H bonds.
  • - The paper provides a summary of the types of substrates used, proposed reaction mechanisms, and potential applications, aiming to inspire new methods for building Csp-C bonds effectively.
View Article and Find Full Text PDF

Metal-Catalyzed Decarboxylative C-H Functionalization.

Chem Rev

July 2017

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China.

Article Synopsis
  • C-H bond activation and decarboxylation are important techniques in organic synthesis, leading to a new method called decarboxylative C-H bond functionalization.! -
  • This review highlights recent advancements in utilizing this method to synthesize various organic compounds, including styrenes, chalcones, and heterocycles.! -
  • The article discusses the effectiveness, limitations, and potential applications of decarboxylative functionalization across different types of C-H bonds.!
View Article and Find Full Text PDF

Synthesis of bicyclic p-diiodobenzenes via silver-catalyzed Csp-H iodination and ruthenium-catalyzed cycloaddition.

J Am Chem Soc

June 2006

Department of Applied Chemistry Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan.

Highly substituted iodobenzenes were efficiently and regioselectively synthesized from readily available 1,6-diynes via two-step process consisting of silver-catalyzed Csp-H iodination and subsequent ruthenium-catalyzed [2 + 2 + 2] cycloaddition of resultant iododiynes. Some of the obtained iodobenzenes were subjected to palladium-catalyzed C-C bond-forming reactions such as Mizoroki-Heck reaction, Sonogashira reaction, and Suzuki-Miyaura coupling, giving highly conjugated molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!