Coenzyme A (CoA) is an indispensable cofactor in all living organisms. It is synthesized in an evolutionarily conserved pathway by enzymatic conjugation of cysteine, pantothenate (Vitamin B5), and ATP. This unique chemical structure allows CoA to employ its highly reactive thiol group for diverse biochemical reactions. The involvement of the CoA thiol group in the production of metabolically active CoA thioesters (e.g. acetyl CoA, malonyl CoA, and HMG CoA) and activation of carbonyl-containing compounds has been extensively studied since the discovery of this cofactor in the middle of the last century. We are, however, far behind in understanding the role of CoA as a low-molecular-weight thiol in redox regulation. This review summarizes our current knowledge of CoA function in redox regulation and thiol protection under oxidative stress in bacteria. In this context, I discuss recent findings on a novel mode of redox regulation involving covalent modification of cellular proteins by CoA, termed protein CoAlation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST20180415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!