Bacteriophages and phage tail-like bacteriocins (PTLBs) rely on receptor-binding proteins (RBPs) located in tail fibers or spikes for an initial and specific interaction with susceptible bacteria. Bacteriophages kill bacteria through a lytic, replicative cycle, whereas PTLBs kill the target through membrane depolarization in a single hit mechanism. Extensive efforts in the engineering of RBPs of both phages and PTLBs have been undertaken to obtain a greater understanding of the structural organization of RBPs. In addition, a major goal of engineering RBPs of phages and PTLBs is the production of antibacterials with a customized spectrum. Swapping of the RBP of phages and PTLBs results in a shift in activity spectrum in accordance with the spectrum of the new RBP. The engineering of strictly virulent phages with new RBPs required significant technical advances in the past decades, whereas the engineering of RBPs of PTLBs relied on the traditional molecular techniques used for the manipulation of bacteria and was thus relatively straightforward. While phages and PTLBs share their potential for specificity tuning, specific features of phages such as their lytic killing mechanism, their self-replicative nature and thus different pharmacokinetics and their potential to co-evolve are clear differentiators compared with PTLBs in terms of their antibacterial use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST20180172 | DOI Listing |
Sci Rep
January 2023
Microbiología Traslacional y Multidisciplinar (MicroTM)-Instituto de Investigación Biomédica (INIBIC), Servicio de Microbiología, Hospital A Coruña (CHUAC), Universidad de A Coruña (UDC), A Coruña, Spain.
Phage tail-like bacteriocins (PTLBs) are large proteomic structures similar to the tail phages. These structures function in bacterial competition by making pores in the membrane of their competitors. The PTLBs identified in Pseudomonas aeruginosa are known as R-type and F-type pyocins, which have a narrow spectrum of action.
View Article and Find Full Text PDFBiomed Pharmacother
November 2022
KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden. Electronic address:
Phage Tail Like bacteriocins (PTLBs) has been an area of interest in the last couple of years owing to their varied application against multi-drug resistant (MDR), anti-microbial resistant (AMR) pathogens and their evolutionary link with the dsDNA virus and bacteriophages. PTLBs are defective phages derived from Myoviridae and Siphoviridae phages, PTLBs are distinguished into R-type (Rigid type) characterized by a non-flexible contractile nanotube resembling Myoviridae phage contractile tails, and F-type (Flexible type) with a flexible non-contractile rod-like structure similar to Siphoviridae phages. In this review, we have discussed the structural association, mechanism, and characterization of PTLBs.
View Article and Find Full Text PDFBiochem Soc Trans
February 2019
Department of Biotechnology, Ghent University, Ghent, Belgium
Bacteriophages and phage tail-like bacteriocins (PTLBs) rely on receptor-binding proteins (RBPs) located in tail fibers or spikes for an initial and specific interaction with susceptible bacteria. Bacteriophages kill bacteria through a lytic, replicative cycle, whereas PTLBs kill the target through membrane depolarization in a single hit mechanism. Extensive efforts in the engineering of RBPs of both phages and PTLBs have been undertaken to obtain a greater understanding of the structural organization of RBPs.
View Article and Find Full Text PDFFront Microbiol
August 2018
Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.
Diffocins are high-molecular-weight phage tail-like bacteriocins (PTLBs) that some strains produce in response to SOS induction. Similar to the related R-type pyocins from , R-type diffocins act as molecular puncture devices that specifically penetrate the cell envelope of other strains to dissipate the membrane potential and kill the attacked bacterium. Thus, R-type diffocins constitute potential therapeutic agents to counter -associated infections.
View Article and Find Full Text PDFAnnu Rev Virol
September 2017
AvidBiotics Corp., South San Francisco, California 94080; email: ,
Many dsDNA bacterial viruses (bacteriophages/phages) have long tail structures that serve as organelles for DNA delivery to host targets. These structures, particularly those of Myoviridae and Siphoviridae phages, have an evolutionary relationship with other cellular biological entities that share the common function of penetrating the bacterial envelope. Among these are type VI secretion systems, insecticidal protein complexes, and bacteriocins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!