A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Basis for the Potent Inhibition of the Emerging Carbapenemase VCC-1 by Avibactam. | LitMetric

AI Article Synopsis

  • In 2016, researchers discovered a new carbapenemase called VCC-1 in shrimp imported to Canada, with additional isolates found along the German coast, indicating the gene's widespread mobility.
  • VCC-1 can break down various antibiotics and is only weakly inhibited by common treatments, raising concerns about its potential as a public health issue despite not being found in clinical settings yet.
  • Studies showed that the FDA-approved inhibitor avibactam can restore sensitivity of certain antibiotics against bacteria producing VCC-1, and early research aims to develop strategies to combat this emerging threat.

Article Abstract

In 2016, we identified a new class A carbapenemase, VCC-1, in a nontoxigenic strain that had been isolated from retail shrimp imported into Canada for human consumption. Shortly thereafter, seven additional VCC-1-producing isolates were recovered along the German coastline. These isolates appear to have acquired the VCC-1 gene () independently from the Canadian isolate, suggesting that is mobile and widely distributed. VCC-1 hydrolyzes penicillins, cephalothin, aztreonam, and carbapenems and, like the broadly disseminated class A carbapenemase KPC-2, is only weakly inhibited by clavulanic acid or tazobactam. Although VCC-1 has yet to be observed in the clinic, its encroachment into aquaculture and other areas with human activity suggests that the enzyme may be emerging as a public health threat. To preemptively address this threat, we examined the structural and functional biology of VCC-1 against the FDA-approved non-β-lactam-based inhibitor avibactam. We found that avibactam restored the sensitivity of to meropenem, imipenem, and ertapenem. The acylation efficiency was lower for VCC-1 than for KPC-2 and akin to that of PAO1 AmpC (/  = 3.0 × 10 M s). The tertiary structure of VCC-1 is similar to that of KPC-2, and they bind avibactam similarly; however, our analyses suggest that VCC-1 may be unable to degrade avibactam, as has been found for KPC-2. Based on our prior genomics-based surveillance, we were able to target VCC-1 for detailed molecular studies to gain early insights that could be used to combat this carbapenemase in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437526PMC
http://dx.doi.org/10.1128/AAC.02112-18DOI Listing

Publication Analysis

Top Keywords

vcc-1
10
carbapenemase vcc-1
8
class carbapenemase
8
vcc-1 kpc-2
8
avibactam
5
molecular basis
4
basis potent
4
potent inhibition
4
inhibition emerging
4
carbapenemase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!