SPH (self-incompatibility protein homologue) proteins are a large family of small, disulfide-bonded, secreted proteins, initially found in the self-incompatibility response in the field poppy (), but now known to be widely distributed in plants, many containing multiple members of this protein family. Using the Origami strain of , we expressed one member of this family, SPH15 from , as a folded thioredoxin fusion protein and purified it from the cytosol. The fusion protein was cleaved and characterised by analytical ultracentrifugation, circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. This showed that SPH15 is monomeric and temperature stable, with a β-sandwich structure. The four strands in each sheet have the same topology as the unrelated proteins: human transthyretin, bacterial TssJ and pneumolysin, with no discernible sequence similarity. The NMR-derived structure was compared with a model, made using a new deep learning algorithm based on co-evolution/correlated mutations, DeepCDPred, validating the method. The DeepCDPred method and homology modelling to SPH15 were then both used to derive models of the 3D structure of the three known PrsS proteins from , which have only 15-18% sequence homology to SPH15. The DeepCDPred method gave models with lower discreet optimised protein energy scores than the homology models. Three loops at one end of the poppy structures are postulated to interact with their respective pollen receptors to instigate programmed cell death in pollen tubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BCJ20180828 | DOI Listing |
Am J Bot
November 2024
Department of Biology, University of Central Florida, Orlando, 32816, FL, USA.
Premise: The use of hybrid breeding systems to increase crop yields has been the cornerstone of modern agriculture and is exemplified in the breeding and improvement of cultivated sunflower (Helianthus annuus). However, it is poorly understood what effect supporting separate breeding pools in such systems, combined with continued selection for yield, may have on leaf ecophysiology and specialized metabolite variation.
Methods: We analyzed 288 lines of cultivated H.
Biochem J
March 2019
Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
SPH (self-incompatibility protein homologue) proteins are a large family of small, disulfide-bonded, secreted proteins, initially found in the self-incompatibility response in the field poppy (), but now known to be widely distributed in plants, many containing multiple members of this protein family. Using the Origami strain of , we expressed one member of this family, SPH15 from , as a folded thioredoxin fusion protein and purified it from the cytosol. The fusion protein was cleaved and characterised by analytical ultracentrifugation, circular dichroism and nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFBiomol NMR Assign
April 2019
Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
The SPH proteins are a large family of small, disulphide-bonded, secreted proteins, originally found to be involved in the self-incompatibility response in the field poppy (Papaver rhoeas). They are now known to be widely distributed in plants, many containing multiple members of this protein family. Apart from the PrsS proteins in Papaver the function of these proteins is unknown but they are thought to be involved in plant development and cell signalling.
View Article and Find Full Text PDFPlant Mol Biol
March 1999
Wolfson Laboratory for Plant Molecular Biology, School of Biological Sciences, University of Birmingham, UK.
A detailed analysis of the currently available Arabidopsis thaliana genomic sequence has revealed the presence of a large number of open reading frames with homology to the stigmatic self-incompatibility (S) genes of Papaver rhoeas. The products of these potential genes are all predicted to be relatively small, basic, secreted proteins with similar predicted secondary structures. We have named these potential genes SPH (S-protein homologues).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!