Two kinds of signal-dependent transcription termination and RNA release mechanisms have been established in prokaryotes in vitro by: () binding of Rho to cytidine-rich nascent RNA [Rho-dependent termination (RDT)], and () the formation of a hairpin structure in the nascent RNA, ending predominantly with uridine residues [Rho-independent termination (RIT)]. As shown here, the two signals act independently of each other and can be regulated (suppressed) by translation-transcription coupling in vivo. When not suppressed, both RIT- and RDT-mediated transcription termination do occur, but ribonucleolytic processing generates defined new 3' ends in the terminated RNA molecules. The actual termination events at the end of transcription units are masked by generation of new processed 3' RNA ends; thus the in vivo 3' ends do not define termination sites. We predict generation of 3' ends of mRNA by processing is a common phenomenon in prokaryotes as is the case in eukaryotes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410799 | PMC |
http://dx.doi.org/10.1073/pnas.1813181116 | DOI Listing |
Cell Mol Life Sci
January 2025
School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor , we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors.
View Article and Find Full Text PDFNature
January 2025
Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.
View Article and Find Full Text PDFClin Transl Med
January 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
Background: Vitamin K-dependent γ-glutamic acid carboxylation (Gla) proteins are calcium-binding and membrane-associated, participating in coagulation, bone turnover, and cancer biology. The molecular function of transmembrane proline-rich Gla proteins (PRRGs) remains unexplored.
Methods: Analysis of pancreatic ductal adenocarcinoma (PDAC) datasets, including transcription profiles, clinical data, and tissue microarrays, was conducted to evaluate PRRG1 expression and its clinical relevance.
J Mol Biol
February 2025
University Côte d'Azur, INSERM, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, "Laboratory of Excellence (LABEX) Distalz", Valbonne, France. Electronic address:
Transcription is a key cell process that consists of synthesizing several copies of RNA from a gene DNA sequence. This process is highly regulated and closely linked to the ability of transcription factors to bind specifically to DNA. TFinder is an easy-to-use Python web portal allowing the identification of Individual Motifs (IM) such as Transcription Factor Binding Sites (TFBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!