Lipocalins (LCNs) are members of a family of evolutionarily conserved genes present in all kingdoms of life. There are 19 LCN-like genes in the human genome, and 45 Lcn-like genes in the mouse genome, which include 22 major urinary protein (Mup) genes. The Mup genes, plus 29 of 30 Mup-ps pseudogenes, are all located together on chromosome (Chr) 4; evidence points to an "evolutionary bloom" that resulted in this Mup cluster in mouse, syntenic to the human Chr 9q32 locus at which a single MUPP pseudogene is located. LCNs play important roles in physiological processes by binding and transporting small hydrophobic molecules -such as steroid hormones, odorants, retinoids, and lipids-in plasma and other body fluids. LCNs are extensively used in clinical practice as biochemical markers. LCN-like proteins (18-40 kDa) have the characteristic eight β-strands creating a barrel structure that houses the binding-site; LCNs are synthesized in the liver as well as various secretory tissues. In rodents, MUPs are involved in communication of information in urine-derived scent marks, serving as signatures of individual identity, or as kairomones (to elicit fear behavior). MUPs also participate in regulation of glucose and lipid metabolism via a mechanism not well understood. Although much has been learned about LCNs and MUPs in recent years, more research is necessary to allow better understanding of their physiological functions, as well as their involvement in clinical disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381713 | PMC |
http://dx.doi.org/10.1186/s40246-019-0191-9 | DOI Listing |
Phys Rev Lett
November 2024
School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
Capturing the intricate dynamics of partially coherent patterns in coupled oscillator systems is vibrant and one of the crucial areas of nonlinear sciences. Considering higher-order Fourier modes in the coupling, we discover a novel type of clustered coherent state in phase models, where inside the coherent region oscillators are further split into q dynamically equivalent subgroups with a 2π/q phase difference between two neighboring subgroups, forming a multicoherent-phase (MUP) chimera state. Both a self-consistency analysis and the Ott-Antonsen dimension reduction techniques are used to theoretically derive these solutions, whose stability are further demonstrated by spectral analysis.
View Article and Find Full Text PDFMuscle Nerve
November 2024
Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan.
Microbiol Spectr
February 2024
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.
The gut microbiota is shaped by host metabolism. In house mice (), major urinary protein (MUP) pheromone production represents a considerable energy investment, particularly in sexually mature males. Deletion of the gene family shifts mouse metabolism toward an anabolic state, marked by lipogenesis, lipid accumulation, and body mass increases.
View Article and Find Full Text PDFGenes (Basel)
November 2023
Institute of Animal Physiology and Genetics, Laboratory of Mammalian Evolutionary Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic.
Mouse wild-derived strains (WDSs) combine the advantages of classical laboratory stocks and wild animals, and thus appear to be promising tools for diverse biomedical and evolutionary studies. We employed 18 WDSs representing three non-synanthropic species (, , and ) and three house mouse subspecies (, , ), which are all important human commensals to explore whether the number of major urinary protein (MUP) genes and their final protein levels in urine are correlated with the level of commensalism. Contrary to expectations, the MUP copy number (CN) and protein excretion in the strains derived from , which is supposed to be the strongest commensal, were not significantly different from the non-commensal species.
View Article and Find Full Text PDFForensic Sci Int
December 2023
Forensic Science Centre "Ivan Vučetić", Ministry of the Interior, Zagreb, Croatia.
Genetic markers can represent a valuable tool for forensic purposes in discriminating between fiber-type and drug-type cannabis. The aim of this research was to evaluate developed genetic markers for tetrahydrocannabinolic acid synthase (THCAS) when applied on certified hemp (14 varieties) and forensic casework samples of four chemotypes (40 seizures). Chemotype-associated PCR-based markers did not enable reliable selective amplification despite the difference in cannabinoid composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!