One of the major causes of ecological and environmental problems comes from the enormous number of discarded waste tires, which is directly connected to the exponential growth of the world's population. In this paper, previous works carried out on the effects of partial or full replacement of aggregate in concrete with waste rubber on some properties of concrete were investigated. A database containing 457 mixtures with partial or full replacement of natural aggregate with waste rubber in concrete provided by different researchers was formed. This database served as the basis for investigating the influence of partial or full replacement of natural aggregate with waste rubber in concrete on compressive strength. With the aid of the database, the possibility of achieving reliable prediction of the compressive strength of concrete with tire rubber is explored using neural network modelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416612PMC
http://dx.doi.org/10.3390/ma12040561DOI Listing

Publication Analysis

Top Keywords

waste rubber
16
compressive strength
12
partial full
12
full replacement
12
strength concrete
8
replacement natural
8
natural aggregate
8
aggregate waste
8
rubber concrete
8
concrete
6

Similar Publications

The significant growth in road infrastructure worldwide over the last decade has resulted in a notable increase in the demand for asphalt binder. However, the utilization of asphalt binder in the road industry poses challenges to environmental sustainability and economic standpoints. The application of vehicular loads and exposure to environmental factors throughout the service life of roads contribute to the deterioration of binder properties, such as hardening and aging, ultimately leading to premature road failure.

View Article and Find Full Text PDF

Today, plastic plays a pervasive role in everyday life. Their improper disposal can create ongoing environmental challenges. Polyurethane (PU) is a polymer with elastomeric properties that exhibits significant adhesion and durability.

View Article and Find Full Text PDF

Performance of Crumb Rubber Tire-Modified Bitumen for Malaysian Climate Regions.

Materials (Basel)

November 2024

Institute of Transportation, Faculty of Civil and Environmental Engineering, TU Wien, Karlsplatz 13/E230, 1040 Vienna, Austria.

Researchers are increasingly concerned about the vast amounts of waste rubber tires produced globally, which contribute significantly to environmental pollution. The potential of incorporating waste rubber tires to modify bitumen has garnered considerable interest. This study assesses pavement design temperatures according to SUPERPAVE standards for representative Malaysian regions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the influence of hooked-end steel fibers on modified self-compacting concrete (SCC) by incorporating residues like marble, granite, and rubber.
  • It finds that increased rubber content improves energy absorption, suggesting a viable alternative for structural materials.
  • The research assesses both fresh and hardened properties of SCC, revealing that mixtures with these additives can enhance damping ratios while also reducing cement usage, offering potential environmental benefits.
View Article and Find Full Text PDF

Spent mushroom substrate (SMS), a lignocellulosic waste after mushroom production is generally discarded without proper management. There is increasing interest in the sustainable transformation of lignocellulosic waste into high-value products. Within this context, the present study investigated the potential of the SMS from the cultivation of and on rubber tree wood sawdust as substrates for xylooligosaccharides (XOS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!