The progressive decline of cell function and integrity, manifesting clinically as increased vulnerability to adverse outcomes and death, is core to biological aging. Mitochondrial dysfunction, oxidative stress, altered intercellular communication (including chronic low-grade inflammation), genomic instability, telomere attrition, loss of proteostasis, altered nutrient sensing, epigenetic alterations, and stem cell exhaustion have been proposed as hallmarks of aging. These "aging pillars" are not mutually exclusive, making the matter intricate and leaving numerous unanswered questions. The characterization of circulating extracellular vesicles (EVs) has recently allowed specific secretory phenotypes associated with aging to be identified. As such, EVs may serve as novel biomarkers for capturing the complexity of aging. Besides the mitochondrial⁻lysosomal axis, EV trafficking has been proposed as an additional layer in mitochondrial quality control. Indeed, disruption of the mitochondrial⁻lysosomal axis coupled with abnormal EV secretion may play a role in the pathogenesis of aging and several disease conditions. Here, we discuss (1) the mechanisms of EV generation; (2) the relationship between the mitochondrial⁻lysosomal axis and EV trafficking in the setting of mitochondrial quality control; and (3) the prospect of using EVs as aging biomarkers and as delivery systems for therapeutics against age-related conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412692PMC
http://dx.doi.org/10.3390/ijms20040805DOI Listing

Publication Analysis

Top Keywords

mitochondrial⁻lysosomal axis
12
mitochondrial dysfunction
8
extracellular vesicles
8
axis trafficking
8
mitochondrial quality
8
quality control
8
aging
7
mitochondrial
4
dysfunction aging
4
aging insights
4

Similar Publications

FOLR1 Regulates the Malignant Progression of Glioblastoma through the SRC/ERK1/2 Axis.

Comb Chem High Throughput Screen

January 2025

School of Public Health, Zhengzhou University, No. 100, Science Avenue, High-tech Zone, Zhengzhou, Henan 450001, China.

Background: GBM is an aggressive brain tumor with limited treatment options. Prior research has indicated FOLR1 as a pivotal gene involved in cancer pathogenesis.

Aim: This study aimed to explore the involvement of folate receptor alpha (FOLR1) in glioblastoma (GBM) and evaluate its potential as a therapeutic target.

View Article and Find Full Text PDF

Induction of lysosome biogenesis is a novel function of the CGAS-STING1 pathway.

Autophagy

January 2025

Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, China.

Induction of macroautophagy/autophagy has been established as an important function elicited by the CGAS-STING1 pathway during pathogen infection. However, it remains unknown whether lysosomal activity within the cell in these settings is concurrently enhanced to cope with the increased autophagic flux. Recently, we discovered that the CGAS-STING1 pathway elevates the degradative capacity of the cell by activating lysosome biogenesis.

View Article and Find Full Text PDF

Metabolic-associated fatty liver disease (MAFLD) is a chronic, progressive disorder characterized by hepatic steatosis and excessive lipid accumulation. Its high global adult prevalence (approximately 50.7%), however, FDA-approved therapeutic drugs remains lacking.

View Article and Find Full Text PDF

THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment.

View Article and Find Full Text PDF

Molecular response to CO-driven ocean acidification in the larvae of the sea urchin Hemicentrotus pulcherrimus: Evidence from comparative transcriptome analyses.

Mar Environ Res

January 2025

Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China. Electronic address:

In order to explore the impact of CO-driven ocean acidification (OA) on gene expression of sea urchins, gametes of Hemicentrotus pulcherrimus were fertilized and developed to the four-armed larvae in either seawater at current pH levels (pH = 7.98) or in three laboratory-controlled OA conditions (ΔpH = -0.3, -0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!