Feeding of 1-Kestose Induces Glutathione-S-Transferase Expression in Mouse Liver.

Foods

Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Aichi 470-0195, Japan.

Published: February 2019

Functional food ingredients, including prebiotics, have been increasingly developed for human health. The improvement of the human intestinal environment is one of their main targets. Fructooligosaccarides (FOS) are oligosaccharide fructans that are well studied and commercialized prebiotics. 1-Kestose, one of the components of FOS, is considered to be a key prebiotic component in FOS. However, to our knowledge, no studies have been reported on the physiological efficacy of 1-Kestose regarding its anti-oxidative activity. In the present study, we examined the effects of dietary 1-Kestose on gene expression of antioxidative enzymes in the liver, kidney and epididymal adipose tissue of mice by quantitative RT-PCR (qRT-PCR). We demonstrated that a 1-Kestose-rich diet increased mRNA and enzymatic activity levels of glutathione-S-transferase (GST) in mouse liver. These results suggest the possibility that dietary 1-Kestose as a prebiotic may enhance antioxidative activity in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406667PMC
http://dx.doi.org/10.3390/foods8020069DOI Listing

Publication Analysis

Top Keywords

mouse liver
8
dietary 1-kestose
8
feeding 1-kestose
4
1-kestose induces
4
induces glutathione-s-transferase
4
glutathione-s-transferase expression
4
expression mouse
4
liver functional
4
functional food
4
food ingredients
4

Similar Publications

Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy.

Cell Death Differ

January 2025

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Parkin modulates the hepatocellular carcinoma microenvironment by regulating PD-1/PD-L1 signalling.

J Adv Res

January 2025

Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China. Electronic address:

Introduction: Parkin-mediated mitophagy is essential for the clearance of damaged mitochondria, and it inhibits tumour development. The role of mitophagy in modulating tumour immunity is becoming clearer, but the underlying mechanism is still poorly understood.

Objective: This study was designed to examine the role for Parkin in the immune microenvironment of liver tumors induced by carbon tetrachloride (CCl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!