A Self-Selective Correlation Ship Tracking Method for Smart Ocean Systems.

Sensors (Basel)

Department of Engineering, Qatar University, Doha 2713, Qatar.

Published: February 2019

In recent years, with the development of the marine industry, the ship navigation environment has become more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count sailing ships to ensure maritime security and facilitate management for Smart Ocean systems. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly includes: (1) A self-selective model with a negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of the classifier at the same time; (2) a bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were over 8 % higher than Discriminative Scale Space Tracking (DSST) on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 frames per second (FPS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412977PMC
http://dx.doi.org/10.3390/s19040821DOI Listing

Publication Analysis

Top Keywords

proposed method
12
self-selective correlation
8
method
8
smart ocean
8
ocean systems
8
correlation filtering
8
box regression
8
method effectively
8
correlation ship
4
ship tracking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!