All-solid-state potentiometric sensors were prepared by using polyaniline (PANI) as the solid contact material. A film of PANI (thickness approximately being 0.25 µm) was deposited on a solid substrate (carbon screen printed platform). The PANI layer was subsequently coated with an ion-selective membrane (ISM) containing uniform-sized molecularly imprinted nanoparticles to produce a solid-contact ion-selective electrode (SC/ISE) for bispyribac herbicide (sensor I). In addition, aliquat 336 was also used as an ion exchanger in plasticized PVC membrane (sensor II). The proposed sensors revealed a remarkably improved sensitivity towards bispyribac ions with anionic slopes of -47.8 ± 1.1 (r² = 0.9995) and -44.4 ± 1.4 (r² = 0.9997) mV/decade over a linear range 1.0 × 10⁻8.6 × 10 M, 1.0 × 10⁻9.0 × 10 M and detection limits of 1.33 and 1.81 µg/mL for sensors I and II, respectively.Selectivity of both sensors is significantly high for different common pesticides and inorganic anions. The potential stability of the SC/ISEs was studied using chronopotentiometry. Electrochemical impedance spectrometry was used to understand the charge-transfer mechanisms of the different types of ion-selective electrodes studied. The impedance response of the electrodes was modelled by using equivalent electrical circuits. The sensors were used for a direct measurement of the bispyribac content in commercial herbicide formulations and soil samples collected from agricultural lands planted with rice and sprayed with bispyribac herbicide. The results agree fairly well with data obtained using HPLC method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412243 | PMC |
http://dx.doi.org/10.3390/molecules24040712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!