In April 2004, there was a serious outbreak of a tomato (Lypersicon esculentum Mill.) leaf spot disease in Mgeta, Mvomero District of Tanzania. The disease was characterized by lesions on green tomato fruits that were small, sunken, and black and were surrounded by darker green haloes. Lesions on ripe tomato fruits were dark brown to black, superficial, and measured approximately 1 to 2 mm in diameter. On the leaves, lesions were small, black, and surrounded by chlorotic (yellow) haloes. In some cases, the specks coalesced to form large lesions on older leaves. Black lesions were also observed on stems and petioles. A disease survey of selected tomato-producing areas in Arusha, Dodoma, Iringa, and Morogoro regions of Tanzania during 2004 and 2005 revealed that the disease was widespread in farmers' fields in all areas surveyed. Disease incidence was approximately 80%, while severity, rated on the scale of Chambers and Merriman (1), ranged from moderate (11 to 40 lesions per plant) to severe (>40 lesions per plant). A bacterium that produced a greenish, diffusible pigment on King's medium B was consistently isolated from lesions on tomato fruits collected from the fields in all the surveyed areas. All 56 isolates obtained were gram negative, oxidase negative, and fluoresced on King's medium B under UV light. None utilized phenylethylamine as the sole carbon source, while three isolates utilized i-erythritol and lactulose. Biolog analysis of the isolates, along with two reference strains of P. syringae pv. tomato (Pst CEP-3 from Sokoine University of Agriculture, Tanzania and Pst BB6 [Race 1] from Göttinger Sammlung Phytopathogener Bakterien, Göttingen, Germany) identified them as P. syringae pv. tomato, with similarity indices of 0.518 to 0.933. They also were positively identified as P. syringae pv. tomato by repetitive sequence-based-PCR (2,3) and fragment length polymorphism analysis. Pathogenicity of the strains was confirmed by spraying 35-day-old tomato seedlings (cv. Tanya) with suspensions of the isolates at a concentration of 10 CFU ml of sterile water. After approximately 72 h, small, water-soaked, dark brown lesions similar to those observed on the field plants were observed on leaves of all the inoculated tomato seedlings. There were no symptoms on control plants. The bacterium was reisolated from the infected plants and identified as P. syringae pv. tomato, in accordance with Koch's postulates. To our knowledge, this is the first report of the occurrence of tomato bacterial speck in Tanzania. References: (1). S. C. Chambers and P. R. Merriman. Aust. J. Agric. Res. 26:657, 1975. (2). F. J. Louws et al. Appl. Environ. Microbiol. 60:2286, 1994. (3). M. Zaccardelli et al. Eur. J. Plant Pathol. 111:85, 2005.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-91-4-0462C | DOI Listing |
J Environ Manage
January 2025
School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China. Electronic address:
Crop diseases significantly threaten global food security, driving the need for innovative control strategies. This study explored using ZnO-TiO@MSC, a novel nanomaterial synthesized using a corn stover template, to enhance disease resistance in tomato plants. In vitro assays demonstrated potent antimicrobial activity of ZnO-TiO@MSC against the pathogen Pseudomonas syringae pv.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS , Ithaca, United States.
Molecules
December 2024
Department of Mathematics & Computer Science, Alabama State University, Montgomery, AL 36104, USA.
Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides.
View Article and Find Full Text PDFCell Rep
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.
Plant extracellular vesicles play a role in systemic acquired resistance by facilitating the transmission of immune signals between plant cells. Extracellular vesicles (EVs) play a critical role in facilitating the transfer of nucleic acids and proteins between plants and pathogens. However, the involvement of plant EVs in intercellular communication and their contribution to the regulation of physiological and pathological conditions in plants remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!