Monilinia fructicola, causal agent of fruit brown rot, is a quarantine pathogen in Europe (1). It presents a significant threat because of its aggressivity on flowers, shoots, and wood at low temperatures and propensity for sexual reproduction that increases potential for evolutionarily adaptation to new environments, hosts, and fungicides. It is common in North America, Japan, Australia, and South America. It occurs in orchards in France, has been detected but eradicated from Austria and Spain, and has been found on imported peach in Hungary (1,2). In Switzerland, we recently detected M. fructicola in supermarkets on imported fruit with brown rot symptoms similar to those caused by endemic M. fructigena and M. laxa. Preliminary identification was based on distinctive colony and conidial morphology on potato dextrose agar of fruit isolates. Specific identification was determined by polymerase chain reaction (PCR) (3) and sequencing the internal transcribed spacer (ITS) region. Koch's postulates were fulfilled by reproducing brown rot on healthy inoculated fruit. Surveys of imported fruit in markets (n = 42) using PCR revealed M. fructicola on all imported apricot and nectarine from the United States and France, but none on apricot, peach, plum, and cherry from Spain, France, Italy, or Turkey. Field surveys of apricot, peach, plum, prune, nectarine, and cherry orchards in 13 Swiss cantons were all negative (n = 71 in 2003 and 164 in 2005). This report demonstrates that imported fruit is a weak link in quarantine efforts and poses a potential threat. Transmission to local trees via highly dispersible, profuse spores from recycled packaging and disposal sites for discarded fruit has thus far not occurred but the risk deserves attention. Revised regulations for fruit treatment at points of entry and/or scrutiny of origin orchards may be warranted. References: (1) OEPP/EPPO. List of A2 pests regulated as quarantine pests in the EPPO region. Version 2005-09. Online publication with distribution map at http://www.eppo.org , 2005. (2) M. Petróczy and L. Palkovics. Plant Dis. 90:375, 2006. (3) K. J. D. Hughes et al. EPPO Bull. 30:507, 2000.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PD-90-1554CDOI Listing

Publication Analysis

Top Keywords

brown rot
16
imported fruit
12
monilinia fructicola
8
fructicola imported
8
fruit
8
fruit brown
8
apricot peach
8
peach plum
8
imported
6
report quarantine
4

Similar Publications

First report of causing black foot on walnut in Chile.

Plant Dis

January 2025

Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;

Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.

View Article and Find Full Text PDF

Fig (Ficus carica L.) holds economic significance in Atushi, Xinjiang, but as fig cultivation expands, disease prevalence has risen. In July 2024, approximately 22% of harvested fig (cv.

View Article and Find Full Text PDF

Occurrence of AG-5 Causing Root Rot on in Northwestern China.

Plant Dis

January 2025

Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China;

Astragalus mongholicus is a perennial Chinese medicinal herb in the family Leguminosae widely cultivated in China. In September 2023, A. mongholicus plants in a field in Weiyuan County, Gansu Province, showed symptoms of circular or irregular brown, sunken and necrotic lesions, multiple lesions coalesced, and brown longitudinal cracks in the roots.

View Article and Find Full Text PDF

Purpose: The study focused on developing a rapid PCR-based detection method and employing gamma irradiation techniques to manage , aiming to produce brown rot-free export-quality potatoes. This initiative seeks to enhance potato exports from Bangladesh.

Materials And Methods: Samples of potato tubers and soil were collected from various commercially significant potato-growing areas, resulting in a total of 168 isolates from potato tubers and soil across 12 regions.

View Article and Find Full Text PDF

Background: Hazelnut (), a significant woody oil tree species in economic forests, faces production constraints due to biotic stresses, with Hazelnut Husk Brown Rot, caused by the pathogenic necrotrophic fungus (), being the most severe. To date, limited information is available regarding the resistance of hazelnuts to . To better understand the mechanisms of resistance to .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!