AI Article Synopsis

  • Research on Magnaporthe poae isolates from turfgrass found three genetic clades (A, B, and C), with Clade A including diverse hosts and Clade B and C being more specialized.
  • The study's PCR assay did not effectively identify some North Carolina isolates, highlighting its limitations in diagnostics.
  • Kentucky bluegrass isolates showed higher virulence towards creeping bentgrass, with the improved Penn A-4 variety being more susceptible to summer patch disease than Penncross, indicating the need for further research on cultivar susceptibility and disease diagnosis.

Article Abstract

Isolates of Magnaporthe poae from turfgrass hosts were analyzed for mating type, genetic relatedness according to ITS sequences, reaction to a previously developed species-specific poly-merase chain reaction (PCR) assay, and virulence on two creeping bentgrass cultivars in growth chamber experiments. Analysis of internal transcribed spacer (ITS) sequences revealed three clades, designated A, B, and C. Clade A contained isolates of both mating types from creeping bentgrass, annual bluegrass, and Kentucky bluegrass. Clade B contained only mating type 'A' isolates from annual bluegrass, whereas Clade C contained only mating type 'a' isolates from creeping bentgrass. The M. poae PCR assay failed to positively identify several North Carolina isolates from annual bluegrass and creeping bentgrass. M. poae isolates from Kentucky blue-grass were most virulent toward creeping bentgrass in growth chamber experiments. Although isolates of M. poae are not host specific, certain ITS clades may have a limited host or geographical range. The improved creeping bentgrass cv. Penn A-4 was more susceptible to summer patch than cv. Penncross. Additional research is needed to develop methods for accurate diagnosis of summer patch and other patch diseases in creeping bentgrass and to determine how creeping bentgrass cultivars vary in their susceptibility to these root pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PD-90-1531DOI Listing

Publication Analysis

Top Keywords

creeping bentgrass
36
mating type
12
clade contained
12
annual bluegrass
12
creeping
9
bentgrass
9
magnaporthe poae
8
isolates
8
poae isolates
8
turfgrass hosts
8

Similar Publications

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.

View Article and Find Full Text PDF

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF
Article Synopsis
  • - Root-knot nematodes were identified as the likely cause of serious decline in creeping bentgrass putting greens at a golf course in Indian Wells, California, showing symptoms like yellowing and stunted growth.
  • - Morphological and genetic analysis confirmed the presence of the nematodes, with greenhouse trials revealing that many monocot plants could host them, but dicots did not support reproduction.
  • - Temperature studies showed that the nematode's life cycle thrives between 17-35 °C, but in greenhouse conditions, even high levels of nematode presence did not significantly harm the bentgrass, suggesting other factors may be involved in the putting greens' damage.
View Article and Find Full Text PDF

Dehydration priming remodels protein abundance and phosphorylation level regulating tolerance to subsequent dehydration or salt stress in creeping bentgrass.

J Proteomics

January 2025

Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Article Synopsis
  • Dehydration priming (DP) creates a form of stress memory that enhances plants' abilities to adapt to future dehydration and salt stresses, but the specific molecular mechanisms behind this process remain unclear.
  • This study focused on identifying proteins, their phosphorylation levels, and metabolic pathways involved in DP-induced tolerance to dehydration and salt in the grass species Agrostis stolonifera.
  • Findings revealed that DP affects various proteins and phosphorylation sites differently under dehydration and salt conditions, highlighting distinct metabolic pathways and post-translational modifications that contribute to the plant's stress adaptability.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!