Iris yellow spot virus in Onion Seed Crops in South Africa.

Plant Dis

Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.

Published: September 2007

In December 2006, symptoms typical of iris yellow spot caused by Iris yellow spot virus (IYSV; genus Tospovirus, family Bunyaviridae) were observed on scapes (seed stalks) in an onion (Allium cepa L.) seed crop in the Klein Karoo of the Western Cape Province, South Africa. Symptoms included diamond-shaped chlorotic or necrotic lesions on the scapes, some of which had 'green-islands' with nested diamond-shaped lesions, as well as indistinct, circular to irregular, chlorotic or necrotic lesions of various sizes. At the time symptoms were observed, approximately 5% of the scapes had lodged as a result of extensive lesions resembling those caused by IYSV. The crop was 2 to 3 weeks from harvest. Symptomatic tissue from two plants (two samples from one plant and four samples from the other plant) was tested for IYSV by reverse-transcriptase (RT)-PCR. Total RNA was extracted from symptomatic scape tissue with the SV Total RNA Isolation System (Promega, Madison, WI) according to the manufacturer's instructions. First strand cDNA was synthesized with the RevertAid H Minus First Strand cDNA Synthesis kit (Fermentas Inc., Hanover, MD), followed by PCR amplification with primers IYSV-For (TGG YGG AGA TGY RGA TGT GGT) and IYSV-Rev (ATT YTT GGG TTT AGA AGA CTC ACC), which amplify the nucleocapsid (NP) gene of IYSV. An amplicon of expected size (approximately 750 bp) was observed for each of the symptomatic plants assayed and was sequenced. Comparison of the sequence (GenBank Accession No. EF579801) with GenBank sequences revealed 95% sequence identity with the NP gene of IYSV GenBank Accession No. EF419888, with eight amino acid differences. The known geographic distribution of IYSV in onion bulb or seed crops has increased rapidly in recent years in many areas of the world (1). To our knowledge, this is the first confirmation of IYSV in South Africa. Approximately 6,100 ha of onion bulb crops are grown annually in South Africa in the Western Cape, Kwazulu Natal, Limpopo, and Northern Cape provinces, and 600 ha of onion seed crops are grown primarily in the semi-arid regions of the Western Cape. Examination of an additional 10 onion seed crops in the Klein Karoo during January 2007 revealed the presence of iris yellow spot in three more crops at approximately 5% incidence in each crop. The four symptomatic crops had all been planted as bulb-to-seed crops, using vernalized bulbs produced on the same farm. This suggests that IYSV may have been disseminated into the seed crops on the vernalized bulbs, either as infected bulb tissue or in viruliferous thrips on the bulbs. Reference: (1) D. H. Gent et al. Plant Dis. 90:1468, 2006.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-91-9-1203ADOI Listing

Publication Analysis

Top Keywords

seed crops
20
iris yellow
16
yellow spot
16
south africa
16
onion seed
12
western cape
12
crops
9
spot virus
8
iysv
8
observed scapes
8

Similar Publications

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

A simple and efficient TALEN system for genome editing in plants.

Plant Mol Biol

January 2025

Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.

View Article and Find Full Text PDF

Objective: Wet distiller's grains (WDG) are rich in crude protein, yet challenging to preserve. Nevertheless, incorporating WDG into total mixed ration (TMR) silage holds promise for enhancing fermentation quality. This study investigated the effects of varying WDG proportions on nitrogen composition, fermentation quality, and microorganisms in TMR silage.

View Article and Find Full Text PDF

Feedlot cattle may be subjected to digestive disorders, including ruminal acidosis, due to high concentration of grain in their diet. Therefore, novel feeding strategies are required to maximize animal performance and mitigate economic losses in the operation. This study employed a two-period crossover design to assess the effect of direct ruminal administration of native rumen microorganisms (NRM) inoculation on cattle that underwent a high-grain challenge.

View Article and Find Full Text PDF

Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!