In October of 2005, a field survey was done in the province of Piura in northern Peru to determine the cause of a disease known locally as "mosaico" that was affecting organic Cavendish banana (Musa AAA) grown for the export market. Disease symptoms consisted of pronounced chlorotic and necrotic lesions on leaves of affected plants. Twenty-four farms were visited, and at each location, 10 randomly selected plants at flowering stage were evaluated for disease incidence and severity. Plants showing virus-like symptoms were observed in 18 of the 24 locations (75%). Fifty-two banana leaf samples, 27 from plants showing virus-like symptoms and 25 from asymptomatic plants, were tested for the presence of Banana streak virus (BSV), Cucumber mosaic virus (CMV), and Banana mild mosaic virus (BanMMV) by immunosorbent electron microscopy (ISEM) using partially purified leaf tissue extracts (2).The same extracts were also tested by immunocapture PCR (IC-PCR) for presence of BSV and specific BSV isolates (BSV-OL, BSV-GF, BSV-IM, and BSV-CAV) using badnavirus-specific degenerate primers and BSV isolate-specific primers, respectively (1). Seventeen of 27 leaf samples showing virus-like symptoms (63%) tested positive for BSV by ISEM and IC-PCR using badnavirus, but not isolate-specific, primers. The symptoms on the 10 samples that tested negative were not typical of BSV infection. One asymptomatic leaf sample (4%) also tested positive for BSV. To validate the PCR results, the nucleotide sequence of the amplicon from a plant showing the most prevalent foliar symptom type was determined. This sequence (GenBank Accession No. DQ674317) had ≤86% homology to the corresponding ORF III polyprotein region of BSV and other badnaviruses. Neither CMV nor BanMMV was detected in any of the 52 samples tested. From these results, it was concluded that "mosaico" disease of organic Cavendish bananas in northern Peru is associated frequently with BSV infection and that there is a high incidence of BSV infection in this area. To our knowledge, this is the first report of BSV occurrence in Peru. It was both surprising and interesting that neither BSV-OL nor BSV-GF, the two BSV isolates found most commonly in banana (Musa AAA) and plantain (Musa AAB) in South and Central America (B. E. L. Lockhart, unpublished), was detected in Cavendish banana in northern Peru. Failure to detect BSV-OL and BSV-GF suggests that field infection may be due to vertical transmission by clonal propagation rather than to horizontal transmission from local plantain and that control of "mosaico" disease could therefore be achieved by use of virus-free planting material. References: (1) A. D. W. Geering et al. Phytopathology 90:921, 2000. (2) B. E. L. Lockhart et al. Phytopathology 82:921, 1992.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-91-7-0906BDOI Listing

Publication Analysis

Top Keywords

cavendish banana
12
banana musa
12
musa aaa
12
northern peru
12
showing virus-like
12
virus-like symptoms
12
bsv
12
bsv-ol bsv-gf
12
bsv infection
12
banana
8

Similar Publications

The Physicochemical and Rheological Properties of Green Banana Flour-Wheat Flour Bread Substitutions.

Plants (Basel)

January 2025

Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.

Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.

View Article and Find Full Text PDF

Hybridization between wild Musa species and subspecies from Southeast Asia is at the origin of cultivated bananas. The genomes of these cultivars are complex mosaics involving nine genetic groups, including two previously unknown contributors. This study provides continuous genome assemblies for six wild genetic groups, one of which represents one of the unknown ancestor, identified as M.

View Article and Find Full Text PDF

Trichoderma virens XZ11-1 producing siderophores inhibits the infection of Fusarium oxysporum and promotes plant growth in banana plants.

Microb Cell Fact

January 2025

School of Life and Health Sciences & College of Tropical Crops, Hainan University, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.

Background: Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is a soil-borne fungal disease.

View Article and Find Full Text PDF

First Report of Causing Soft Rot in Bananas in Ecuador.

Plant Dis

December 2024

Universidad de las Fuerzas Armadas, Ciencias de la Vida y la Agricultura, Sangolqui, Pichincha, Ecuador;

Bananas are Ecuador's second largest non-oil export product, and the quality of its fruit has established a strong presence in international markets. One-third of the world's banana exports originate from Ecuador. The Ecuadorian banana market is diversified, exporting fruit to various countries worldwide, making it a vital socio-economic and food security support for the country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!