Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects.

Phys Rev E

Center for Combustion Energy; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.

Published: January 2019

A multiple-relaxation-time discrete Boltzmann model (DBM) is developed for compressible thermal reactive flows. A unified Boltzmann equation set is solved for hydrodynamic and thermodynamic quantities as well as higher order kinetic moments. The collision, reaction, and force terms are uniformly calculated with a matrix inversion method, which is physically accurate, numerically efficient, and convenient for coding. Via the Chapman-Enskog analysis, the DBM is demonstrated to recover reactive Navier-Stokes (NS) equations in the hydrodynamic limit. Both specific heat ratio and Prandtl number are adjustable. Moreover, it provides quantification of hydrodynamic and thermodynamic nonequilibrium effects beyond the NS equations. The capability of the DBM is demonstrated through simulations of chemical reactions in the free falling process, sound wave, thermal Couette flow, and steady and unsteady detonation cases. Moreover, nonequilibrium effects on the predicted physical quantities in unsteady combustion are quantified via the DBM. It is demonstrated that nonequilibrium effects suppress detonation instability and dissipate small oscillations of fluid flows.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.012142DOI Listing

Publication Analysis

Top Keywords

nonequilibrium effects
16
dbm demonstrated
12
discrete boltzmann
8
reactive flows
8
hydrodynamic thermodynamic
8
boltzmann modeling
4
modeling unsteady
4
unsteady reactive
4
nonequilibrium
4
flows nonequilibrium
4

Similar Publications

Previous studies have demonstrated legacy effects of current species distributions to past environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, we have developed a non-equilibrium Species Distribution Modelling (SDM) approach quantifying the temporal extent that must be taken into account to capture 95% of the effect that a given time series of past environmental conditions has on the current distribution of a species. We applied this approach on the distribution of 92 European forest birds in response to past trajectories of change in forest cover and climate.

View Article and Find Full Text PDF

Heat Transport Hysteresis Generated Through Frequency Switching of a Time-Dependent Temperature Gradient.

Entropy (Basel)

December 2024

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

A stochastic energetics framework is applied to examine how periodically shifting the frequency of a time-dependent oscillating temperature gradient affects heat transport in a nanoscale molecular model. We specifically examine the effects that frequency switching, i.e.

View Article and Find Full Text PDF

CdZnTe (CZT) has garnered substantial attention due to its outstanding performance in room-temperature semiconductor radiation detectors, where carrier transport properties are critical for assessing the detector performance. However, due to the complexities of crystal growth, CZT is prone to defects that affect carrier lifetime and mobility. To investigate how defects affect nonequilibrium carrier transport, nonadiabatic molecular dynamics (NAMD) is employed to examine six types of intrinsic defects and their impact on electron-hole (e-h) recombination.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received significant interest for use in tunnel field-effect transistors (TFETs) due to their ultrathin layers and tunable band gap features. In this study, we used density functional theory (DFT) to investigate the electronic properties of six TMD heterostructures, namely, MoSe/HfS, MoTe/ZrS, MoTe/HfS, WSe/HfS, WTe/ZrS, and WTe/HfS, focusing on variations in band alignments. We demonstrate that WTe/ZrS and WTe/HfS have the smallest band gaps (close to 0 or broken) from the considered set.

View Article and Find Full Text PDF

First principles design of multifunctional spintronic devices based on super narrow borophene nanoribbons.

Sci Rep

January 2025

Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.

Borophene, as a new material with various configurations, has attracted significant research attention in recent years. In this study, the electronic properties of a series of χ-type borophene nanoribbons (BNRs) are investigated using a first-principles approach. The results show that the width and edge pattern of the nanoribbons can effectively tune their electronic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!