Emergence of correlations in the process of thermalization of interacting bosons.

Phys Rev E

Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico.

Published: January 2019

We address the question of the relevance of thermalization and scrambling to the increase of correlations in the quench dynamics of an isolated system with a finite number of interacting bosons. Specifically, we study how, in the process of thermalization, the correlations between occupation numbers increase in time, resulting in the emergence of the Bose-Einstein distribution. Despite the exponential increase of the number of principal components of the wave function, we show, both analytically and numerically, that the two-point correlation function before saturation increases quadratically in time according to perturbation theory. In contrast, we find that the out-of-time-order correlator increases algebraically and not exponentially in time after the perturbative regime and before the saturation. Our results can be confirmed experimentally in traps with interacting bosons and they may be relevant to the problem of black hole scrambling.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.99.012115DOI Listing

Publication Analysis

Top Keywords

interacting bosons
12
process thermalization
8
emergence correlations
4
correlations process
4
thermalization interacting
4
bosons address
4
address question
4
question relevance
4
relevance thermalization
4
thermalization scrambling
4

Similar Publications

Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.

View Article and Find Full Text PDF

Breakdown of the Quantum Distinction of Regular and Chaotic Classical Dynamics in Dissipative Systems.

Phys Rev Lett

December 2024

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, C.P. 04510 Mexico City, Mexico.

Quantum chaos has recently received increasing attention due to its relationship with experimental and theoretical studies of nonequilibrium quantum dynamics, thermalization, and the scrambling of quantum information. In an isolated system, quantum chaos refers to properties of the spectrum that emerge when the classical counterpart of the system is chaotic. However, despite experimental progress leading to longer coherence times, interactions with an environment can never be neglected, which calls for a definition of quantum chaos in dissipative systems.

View Article and Find Full Text PDF

Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.

View Article and Find Full Text PDF

Toward Collective Chemistry under Strong Light-Matter Coupling.

J Phys Chem Lett

December 2024

Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China.

Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime.

View Article and Find Full Text PDF

Self-Assembled Chains and Solids of Dipolar Atoms in a Multilayer.

Phys Rev Lett

December 2024

Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain.

We predict that ultracold bosonic dipolar gases, confined within a multilayer geometry, may undergo self-assembling processes, leading to the formation of chain gases and solids. These dipolar chains, with dipoles aligned across different layers, emerge at low densities and resemble phases observed in liquid crystals, such as nematic and smectic phases. We calculate the phase diagram using quantum Monte Carlo methods, introducing a newly devised trial wave function designed for describing the chain gas, where dipoles from different layers form chains without in-plane long-range order.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!