Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The area of networks is very interdisciplinary and exhibits many applications in several fields of science. Nevertheless, there are few studies focusing on geographically located d-dimensional networks. In this paper, we study the scaling properties of a wide class of d-dimensional geographically located networks which grow with preferential attachment involving Euclidean distances through r_{ij}^{-α_{A}} (α_{A}≥0). We have numerically analyzed the time evolution of the connectivity of sites, the average shortest path, the degree distribution entropy, and the average clustering coefficient for d=1,2,3,4 and typical values of α_{A}. Remarkably enough, virtually all the curves can be made to collapse as functions of the scaled variable α_{A}/d. These observations confirm the exist- ence of three regimes. The first one occurs in the interval α_{A}/d∈[0,1]; it is non-Boltzmannian with very-long-range interactions in the sense that the degree distribution is a q exponential with q constant and above unity. The critical value α_{A}/d=1 that emerges in many of these properties is replaced by α_{A}/d=1/2 for the β exponent which characterizes the time evolution of the connectivity of sites. The second regime is still non-Boltzmannian, now with moderately-long-range interactions, and reflects in an index q monotonically decreasing with α_{A}/d increasing from its critical value to a characteristic value α_{A}/d≃5. Finally, the third regime is Boltzmannian-like (with q≃1) and corresponds to short-range interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.99.012305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!