Spatially extended excitable systems can exhibit spiral defect chaos (SDC) during which spiral waves continuously form and disappear. To address how this dynamical state terminates using simulations can be computationally challenging, especially for large systems. To circumvent this limitation, we treat the number of spiral waves as a stochastic population with a corresponding birth-death equation and use techniques from statistical physics to determine the mean episode duration of SDC. Motivated by cardiac fibrillation, during which the heart's electrical activity becomes disorganized and shows fragmenting spiral waves, we use generic models of cardiac electrophysiology. We show that the duration can be computed in minimal computational time and that it depends exponentially on domain size. Therefore, the approach can result in efficient and accurate predictions of mean episode duration which may be extended to more complex geometries and models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555560 | PMC |
http://dx.doi.org/10.1103/PhysRevE.99.012407 | DOI Listing |
Zhonghua Er Ke Za Zhi
January 2025
Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102 China.
To analyze the clinical characteristics,diagnosis and treatment of pediatric myocardial infarction (MI) patients with coronary artery lesions (CAL) after Kawasaki disease (KD). Clinical data including baseline characteristics, KD and CAL information, clinical symptoms at MI onset, electrocardiogram (ECG) and imaging findings, MI treatment, and clinical outcomes of 41 MI patients with CAL after KD admitted to the Children's Hospital of Fudan University from January 2017 to August 2024 were analyzed retrospectively. (1) Demographic characteristics: a total of 41 patients were included (36 males and 5 females).
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, 565-0871, Osaka, Japan.
Heterogeneity is a critical determinant for multicellular pattern formation. Although the importance of microscale and macroscale heterogeneity at the single-cell and whole-system levels, respectively, has been well accepted, the presence and functions of mesoscale heterogeneity, such as cell clusters with distinct properties, have been poorly recognized. We investigated the biological importance of mesoscale heterogeneity in signal-relaying abilities (excitability) in the self-organization of spiral waves of intercellular communications by studying the self-organized pattern formation in a population of Dictyostelium discoideum cells, a classical signal-relaying system model.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Indian Institute of Technology Guwahati, Assam 781039, India.
The oscillatory Belousov-Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFChaos
January 2025
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA.
Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!